
微积分(二)课后题答案复旦大学出版社2.doc
6页微积分〔二〕课后题答案,复旦大学出版社 - 第八章 习题8?1 1.求以下函数的定义域,并画出其示意图: (1)z?1?yxxa22xa22?yb22; (2)z?1ln(x?y); 22(3)z?arcsin; (4)z?x?yb22y-arccos〔x?y〕. xa22解:〔1〕要使函数有意义,必须1?2-0即?yb22?1, -xy 那么函数的定义域为?(x,y)|2?2?1?,如图8-1阴影所示. ab-2 图8-1 图8-1 〔2〕要使函数有意义,必须-?ln(x?y)?0x?y?0 即-?x?y?1x?y, 那么函数的定义域为{(x,y)|x?y且x?y?1},如图8-2所示为直线y?x的下方且除去y?x?1的点的阴影局部〔不包含直线y?x上的点〕. ?yy-1?1-x?y?x?x?y-x-?1? 〔3〕要使函数有意义,必须?x,即?, 即?或?,xx?0x?0-?x?0?x?0-所以函数的定义域为 {(x,y)|x?0且?x?y?x}?{(x,y)|x?0,x?y-x}, 如图8-3阴影所示. 1 图8-3 图8-4 ?y?0?x?0x? 〔4〕要使函数有意义,必须-?y?0 即 ?y?0?2, ?x?y?|x2?y2|?1-?x2?y2?1所以函数的定义域为 {(x,y)|x?0,y?0,x2?y,x2?y2?1}, 如图8-4阴影所示. 2.设函数f(x,y)?x3?2xy?3y2,求 (1) f(?2,3); (2) f ?1?,2? (3)f(x?y,x?y). ?xy?; ?解:〔1〕f(?2,3)?(?2)3?2?(?2)?3?3?32?31; 32 〔2〕f?12-1?12?2?1412?,?xy--?x-2-?3?xy-y-?x3-xyy2; 〔3〕f(x?y,x?y)?(x?y)3?2(x?y)(x?y)?3(x?y)2 ?(x?y)3?2(x2?y2)?3(x?y)2. 3.设F(x,y)?y+f〔x-1〕,假设当y?1时,F(x,1)?x,求f(x)及F(x,y)的表达式.解:由F(x,1)?x得x?y?f(x?1) 即 f(x?1)?x?1 令x?1?t那么x?(1?t)2代入上式有 f(t)?(1?t)2?1?t(t?2) 所以 f(x)?x(x?2) 2 于是 F(x,y)? ?y?f(x?1)?y?(x?1)(x?1) y?x?14.指出以下集合A的内点、边界点和聚点: (1)A?{(x,y)0?x?1,0?y?x};(2)A?{(x,y)3x?y?1}; (3)A={〔x,y〕|x+y>0}; (4)A?(0,2]. 解:〔1〕内点{(x,y)|0?x?1,0?y?x} 边界点{(x,y)|0?x?1,y?0}?{(x,y)|0?y?1,x?1} ?{(x,y)|y?x,0?x?1} 聚点A 〔2〕内点? 边界点A 聚点A 〔3〕内点A 边界点〔0,0〕 聚点A 〔4〕内点? 边界点[0,2] 聚点[0,2] 22习题8?2 1.讨论以下函数在点(0,0)处的极限是否存在: (1) z?xy224x?y; (2) z?x?yx?y. 44解:(1)当P(x,y)沿曲线x?ky趋于〔0,0〕时,有limf(x,y)?limy?0y?kx22ky24y?0ky?y?k1?k2 这个值随k的不同而不同,所以函数Z=xy224x?y在(0,0)处的极限不存在. (2)当P(x,y)沿直线y?kx(k?1)趋于(0,0)时,有 x?kxx?kx1?k1?k (k?1),这个极限值随k的不同而不同,所以函数limf(x,y)?limy?0y?kxx?0? 3 Z=x?yx?y在(0,0)处的极限不存在. 2.求以下极限: (1) limsinxyxxyxy?1?1x?0y?0; (2)lim1?xyx?y22; x?0y?1(3)limx?0y?0; (4)limsinxyx?y22. x-y-解:〔1〕limx?0y?0sinxyx1?xyx?yxy2?limy?x?0y?0sin(xy)xy?0 〔2〕limx?0y?12?1?0?10?122?1 〔3〕limx?0y?0?limx?0y?0xy((xy?1?1)xy?1?1)?lim(x?0y?0xy?1?1)?2 xy?1?1xy?1?1)(1x?y22 〔4〕当x-,y-时,是无穷小量,而sinxy是有界函数,所以它们的积为无穷小量,即limx-y-sinxyx?y22?0. 3.求函数z?yy22?2x?2x的连续点. 解:由于y?2x?0时函数无定义,故在抛物线y?2x处函数连续,函数的连续点是{(x,y)|y222?2x,x?R}. 习题8?3 1.求以下各函数的偏导数: (1) z?(1?x)y; (2) z?lntanyxzyx; (3) z?arctan?z?x; (4) u?yx. y?1解:〔1〕?y(1?x) 4 ?z?y?(1?x)yln(1?x); 〔2〕?z?1?sec2y-ycotysec2y;?xtanyxx2-yx2xx x ?z?1?sec2y?1?1cotysec2y;?ytanyxxxxx x 〔3〕?z?1y?y?x2-1-y?x2?x2?y2; -x- ?z?11?y2-x1-y?xx2?y2; -x-z 〔4〕?u?zyz?x?yx?lny?x2-zlnx2?yx; ?uz?1?zyx; ?yx?uzx1lnyz ?y?lny-?yx.?zxx2.f(x,y)?e?sinx(x?2y),求fx?(0,1),fy?(0,1). 解:f?sinxx?(x,y)?e?(?cosx)(x?2y)?e?sinx?e?sinx[?cosx?(x?2y)?1] fy?(x,y)-esixn-2?2esxi n所以f?sin0x?(0,1)?e(?cos0?(0?2?1)?1)-1 fy?(0,1?)?2sien0? 23.设z?x?y?(y?1)arcsin3y,求?zx?xx?1,?z1. 28y?1?yx?y?1解:?z?x?df(x,1)x?1dx?ddx(x?1)?1 x?1y?122x?12 5 第 页 共 页。
