
离散性随机变量的数学期望.doc
6页2.3.1离散性随机变量的数学期望编制单位:海岳中学 编制人:孙传芝 审核人:王利红 编号学习目标:1:了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出均值或期望.2:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望重点难点:离散型随机变量的均值或期望的概念;根据离散型随机变量的分布列求出均值或期望知识链接:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1.5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,…,n,).于是得到随机变量ξ的概率分布如下:ξ01…k…nP……称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).6. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么(k=0,1,2,…, ).于是得到随机变量ξ的概率分布如下:ξ123…k…P……称这样的随机变量ξ服从几何分布记作g(k,p)= ,其中k=0,1,2,…, .学习过程:一. 课内探究根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ45678910P0.020.040.060.090.280.290.22在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数ξ的分布列,我们可以估计,在n次射击中,预计大约有 次得4环; 次得5环;………… 次得10环.故在n次射击的总环数大约为,从而,预计n次射击的平均环数约为.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数:….1.均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为ξx1x2…xn…Pp1p2…pn…则称 …… 为ξ的均值或数学期望,简称期望. 2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值 4. 均值或期望的一个性质:若(a、b是常数),ξ是随机变量,则η也是随机变量,它们的分布列为ξx1x2…xn…η……Pp1p2…pn…于是…… =……)……) =,由此,我们得到了期望的一个性质:5.若ξB(n,p),则Eξ=np 证明如下:∵ ,∴ 0×+1×+2×+…+k×+…+n×.又∵ , ∴ ++…++…+.故 若ξ~B(n,p),则np.二.典型例题例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望变式:.随机抛掷一枚骰子,求所得骰子点数的期望例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 变式:.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)三.小结反思四.当堂检测1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( )A.4; B.5; C.4.5; D.4.752.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望;⑵他罚球2次的得分η的数学期望;⑶他罚球3次的得分ξ的数学期望.3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.五.课后巩固1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是 (用数字作答)2.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数①求的概率分布列 ②求的数学期望3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 5. 、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A队队员胜的概率B队队员胜的概率A1对B1A2对B2A3对B3现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为,(1)求,的概率分布; (2)求,六.学习后记当堂检测答案答案:C 解:⑴因为,,所以1×+0×⑵η的概率分布为η012P所以 0×+1×+2×=1.4. ⑶ξ的概率分布为ξ0123P 所以 0×+1×+2×=2.1.分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求Eξ. 解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=. ∴ P(ξ=k)=Pn(k)=C)k(1-)n-k(k=0,1,2,….,n). ∴ ξ~B(n,),故 Eξ =n×= 。












