好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

等差数列经典题.docx

5页
  • 卖家[上传人]:re****.1
  • 文档编号:379524153
  • 上传时间:2023-01-15
  • 文档格式:DOCX
  • 文档大小:124.50KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精选优质文档-----倾情为你奉上2.3 等差数列经典题型一、选择题1.已知数列{an}的前n项和Sn=n2,则an等于(  )A.n B.n2C.2n+1 D.2n-1答案 D2.数列{an}为等差数列,它的前n项和为Sn,若Sn=(n+1)2+λ,则λ的值是(  )A.-2 B.-1 C.0 D.1答案 B解析 等差数列前n项和Sn的形式为:Sn=an2+bn,∴λ=-1.3.已知数列{an}的前n项和Sn=n2-9n,第k项满足5S8,则下列结论错误的是(  )A.d<0 B.a7=0C.S9>S5 D.S6与S7均为Sn的最大值答案 C解析 由S50.又S6=S7⇒a7=0,所以d<0.由S7>S8⇒a8<0,因此,S9-S5=a6+a7+a8+a9=2(a7+a8)<0即S90,由 得所以当n=13时,Sn有最大值.S13=25×13+×(-2)=169.因此Sn的最大值为169.方法三 由S17=S9,得a10+a11+…+a17=0,而a10+a17=a11+a16=a12+a15=a13+a14,故a13+a14=0.由方法一知d=-2<0,又因为a1>0,所以a13>0,a14<0,故当n=13时,Sn有最大值.S13=25×13+×(-2)=169.因此Sn的最大值为169.9.在等差数列{an}中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n=________.答案 10解析 由已知,a1+a2+a3=15,an+an-1+an-2=78,两式相加,得(a1+an)+(a2+an-1)+(a3+an-2)=93,即a1+an=31.由Sn===155,得n=10.10.等差数列{an}中,a1<0,S9=S12,该数列在n=k时,前n项和Sn取到最小值,则k的值是________.答案 10或11解析 方法一 由S9=S12,得d=-a1,由,得,解得10≤n≤11.∴当n为10或11时,Sn取最小值,∴该数列前10项或前11项的和最小.方法二 由S9=S12,得d=-a1,由Sn=na1+d=n2+n,得Sn=·n2+·n=-2+a1 (a1<0),由二次函数性质可知n==10.5时,Sn最小.但n∈N*,故n=10或11时Sn取得最小值.三、解答题11.设等差数列{an}满足a3=5,a10=-9.(1)求{an}的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.解 (1)由an=a1+(n-1)d及a3=5,a10=-9得可解得所以数列{an}的通项公式为an=11-2n.(2)由(1)知,Sn=na1+d=10n-n2.因为Sn=-(n-5)2+25,所以当n=5时,Sn取得最大值.12.已知等差数列{an}中,记Sn是它的前n项和,若S2=16,S4=24,求数列{|an|}的前n项和Tn.解 由S2=16,S4=24,得即 解得所以等差数列{an}的通项公式为an=11-2n (n∈N*).(1)当n≤5时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=-n2+10n.(2)当n≥6时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+a5-a6-a7-…-an=2S5-Sn=2×(-52+10×5)-(-n2+10n)=n2-10n+50,故Tn=能力提升13.数列{an}的前n项和Sn=3n-2n2 (n∈N*),则当n≥2时,下列不等式成立的是(  )A.Sn>na1>nan B.Sn>nan>na1C.na1>Sn>nan D.nan>Sn>na1 答案 C 解析: 方法一 由an=,解得an=5-4n.∴a1=5-4×1=1,∴na1=n,∴nan=5n-4n2,∵na1-Sn=n-(3n-2n2)=2n2-2n=2n(n-1)>0.Sn-nan=3n-2n2-(5n-4n2)=2n2-2n>0.∴na1>Sn>nan.方法二 ∵an=5-4n,∴当n=2时,Sn=-2,na1=2,nan=-6,∴na1>Sn>nan。

      14.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.解 (1)根据题意,有: 整理得:解之得:-0,∴a6>0.∴数列{an}的前6项和S6最大.1.公式an=Sn-Sn-1并非对所有的n∈N*都成立,而只对n≥2的正整数才成立.由Sn求通项公式an=f(n)时,要分n=1和n≥2两种情况分别计算,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表示.2.求等差数列前n项和的最值(1)二次函数法:用求二次函数的最值方法来求其前n项和的最值,但要注意n∈N*,结合二次函数图象的对称性来确定n的值,更加直观.(2)通项法:当a1>0,d<0,时,Sn取得最大值;当a1<0,d>0,时,Sn取得最小值.3.求等差数列{an}前n项的绝对值之和,关键是找到数列{an}的正负项的分界点.专心---专注---专业。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.