好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新课标高中数学必修+选修知识点精华归纳-01-集合与简易逻辑(精心排版校正).docx

2页
  • 卖家[上传人]:夏**
  • 文档编号:497340651
  • 上传时间:2023-09-09
  • 文档格式:DOCX
  • 文档大小:206.85KB
  • / 2 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 集合 & 简易逻辑集合(必修1第一章)§1 集合的根本概念1、集合三要素:确定性、互异性、无序性注意区分集合中元素的形式.如:—函数的定义域;—函数的值域;—函数图像上的点集.2、常见集合:正整数集合—或;整数集合—;有理数集合—;实数集合—.3、表示方法:列举法、描述法、Wern图.§2 集合间的根本关系1、.勿忘的情况.,.2、假设,但,且,那么称是的真子集.记作:AB.3、含个元素的集合有个子集,个真子集(非空子集),个非空真子集.§3 集合间的根本运算1、.2、.3、全集、补集:注:补集思想常用于解决否认型或正面较复杂的问题.如:函数在区间上至少存在一个实数,使,求实数的取值范围.(答:)4、性质: 元素的个数:常用逻辑用语(选修2-1第一章)1、命题:可以判断真假的语句逻辑联结词:“或〞“且〞“非〞等词;简单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结词构成的命题.常用小写的拉丁字母,,,,……表示命题.2、四种命题及其相互关系四种命题的真假性之间的关系:⑴ 两个命题互为逆否命题,它们有相同的真假性;⑵ 两个命题为互逆或互否命题,它们的真假性无关.注:① 互为逆否的两个命题等价② 命题的否认与它的否命题的区别:命题的否认是;否命题是. 命题“或〞的否认是“且〞;“且〞的否认是“或〞.③ 常见结论的否认形式:原结论否认原结论否认是不是至少有一个一个也没有都是不都是至多有一个至少有两个至少有个至多有个至多有个至少有个对,成立某,不成立或且对,不成立某,成立且或3、充分条件,必要条件与充要条件—主要用来区分命题的条件与结论之间的关系Ⅰ、从逻辑推理关系上看:①假设,那么是充分条件,是的必要条件;②假设,但 ,那么是充分不必要条件;③假设 ,但,那么是必要不充分条件;④假设且,那么是的充要条件;⑤假设 且 ,那么是的既不充分也不必要条件.Ⅱ、从集合与集合之间的关系上看:满足条件,满足条件:① 假设,那么是充分条件;② 假设,那么是必要条件;③ 假设A B,那么是充分不必要条件;④ 假设B A,那么是必要不充分条件;⑤ 假设,那么是的充要条件;⑥ 假设且,那么是的既不充分也不必要条件.4、复合命题⑴ 形式:或;且;非⑵ 真假判断:“〞形式复合命题的真假判断方法:一真必真;“〞形式复合命题的真假判断方法:一假必假;“〞形式复合命题的真假判断方法:真假相对.5、全称量词与存在量词⑴ 全称量词与全称命题 全称量词:“所有的〞“任意一个〞.含有全称量词的命题,叫做全称命题.⑵ 存在量词与特称命题存在量词:“存在一个〞“至少有一个〞.含有存在量词的命题,叫做特称命题.⑶ 全称命题与特称命题的符号表示及否认①全称命题:,它的否认:全称命题的否认是特称命题.②特称命题:,它的否认:特称命题的否认是全称命题.。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.