好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

结构力学概论几何组成分析.ppt

39页
  • 卖家[上传人]:枫**
  • 文档编号:584278593
  • 上传时间:2024-08-30
  • 文档格式:PPT
  • 文档大小:1.61MB
  • / 39 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析第第8章章 结构力学概论结构力学概论§8-1杆件结构力学的研究对象和任务杆件结构力学的研究对象和任务§8-2杆件结构的计算简图杆件结构的计算简图§8-4荷载的分类荷载的分类§8-3平面杆件结构的分类平面杆件结构的分类 2建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析§8-1 杆件结构力学的研究对象和任务杆件结构力学的研究对象和任务结构的定义结构的定义: 建筑物中支承荷载而起骨架作用的部分建筑物中支承荷载而起骨架作用的部分结构的几何分类结构的几何分类: :-3-分类名称分类名称特点特点实例实例杆件结构杆件结构由杆件组成的结构,是结构力由杆件组成的结构,是结构力学的研究对象学的研究对象梁、拱、刚架、梁、拱、刚架、桁架桁架板壳结构板壳结构又称壁结构,几何特征是其厚又称壁结构,几何特征是其厚度要比长度和宽度小得多度要比长度和宽度小得多房屋中的楼板房屋中的楼板和壳体屋盖和壳体屋盖实体结构实体结构长、宽、厚三个尺度大小相仿长、宽、厚三个尺度大小相仿水工结构中的水工结构中的重力坝重力坝按结构的空间特征分类按结构的空间特征分类: :空间结构和平面结构空间结构和平面结构. . 3建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析(1)(1)讨论结构组成规律与合理形式讨论结构组成规律与合理形式, ,以及结构计算简图的合理选择;以及结构计算简图的合理选择;(2)(2)内力与变形的计算方法内力与变形的计算方法. .进行结构的强度和刚度验算;进行结构的强度和刚度验算;杆件结构力学的任务杆件结构力学的任务: 4建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析§§8-2 8-2 杆件结构的计算简图杆件结构的计算简图1.1.结构体系的简化结构体系的简化2.2.杆件的简化杆件的简化 一般的构结都是空间结构。

      但是,当空间结构在某一平面内的一般的构结都是空间结构但是,当空间结构在某一平面内的杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面结构进行计算本课程主要讨论平面结构的计算当然,也有一些结构进行计算本课程主要讨论平面结构的计算当然,也有一些结构具有明显的空间特征而不宜简化成平面结构结构具有明显的空间特征而不宜简化成平面结构 5建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析(1) (1) 铰结点铰结点(2) (2) 刚结点刚结点3.结点的简化结点的简化(3) (3) 定向结点定向结点 6建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析4.支座的简化支座的简化(1) (1) 固定铰支座固定铰支座(2) (2) 滚轴支座滚轴支座(3) (3) 固定支座(固定端)固定支座(固定端)YXYYXM5.材料性质的简化材料性质的简化 将结构材料视为连续、均匀、各向同性、理想弹性或理想弹塑性6.荷载的简化荷载的简化 集中荷载与分布荷载((4 4)定向支座)定向支座MY 7建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析§§8-3 8-3 平面杆件结构的分类平面杆件结构的分类1.梁梁2.桁架桁架3.拱拱4.刚架刚架由受弯杆件构成,杆件轴线一般为直线由受弯杆件构成,杆件轴线一般为直线由曲杆构成由曲杆构成由若干直杆用铰链连接而成由若干直杆用铰链连接而成由梁柱组成由梁柱组成 8建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析5.组合结构组合结构平面结构和空间结构平面结构和空间结构RARB由桁架和梁或刚架组合在一起形成的结构由桁架和梁或刚架组合在一起形成的结构 9建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析§§8-4 8-4 荷载的分类荷载的分类-9- 荷载可分为恒载和活载。

      一、按作用时间的久暂一、按作用时间的久暂荷载可分为集中荷载和分布荷载荷载可分为静力荷载和动力荷载荷载可分为固定荷载和移动荷载二、按荷载的作用范围二、按荷载的作用范围三、按荷载作用的性质三、按荷载作用的性质四、按荷载位置的变化四、按荷载位置的变化 10建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析第第 9章章 平面体系的几何组成分析平面体系的几何组成分析§9-1体系几何组成分析的意义体系几何组成分析的意义§9-2几何构造分析的几个概念几何构造分析的几个概念§9-4平面几何不变体系组成的基本规则平面几何不变体系组成的基本规则§9-3平面杆件体系自由度的计算平面杆件体系自由度的计算§9-5平面杆件体系的几何组成与静力特性的关系平面杆件体系的几何组成与静力特性的关系 11建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析1、两种体系、两种体系几何不变体系几何不变体系:在不考虑材料应变条件的下,体系的位置和形状保持不变在不考虑材料应变条件的下,体系的位置和形状保持不变几何可变体系几何可变体系:在不考虑材料应变条件的下,体系的位置和形状可以改变在不考虑材料应变条件的下,体系的位置和形状可以改变。

      §9-1 9-1 体系几何组成分析的意义体系几何组成分析的意义 12建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析2、组成分析的目的、组成分析的目的￿￿￿￿￿￿ ((1)判断体系是否几何可变,以确定能否作为结构使用)判断体系是否几何可变,以确定能否作为结构使用￿ ￿;;￿￿￿￿￿￿￿￿((2)分析几何不变体系的组成规律,以选择合适的计算方)分析几何不变体系的组成规律,以选择合适的计算方￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿法,了解结构的受力性能法,了解结构的受力性能3、组成分析的方法、组成分析的方法从约束的从约束的数量数量和约束的和约束的布置方式布置方式两个方面,用机械运动的两个方面,用机械运动的￿￿￿￿￿￿分析方法进行分析研究分析方法进行分析研究——也叫机动分析也叫机动分析 13建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析§9-2 9-2 几何构造分析的几个概念几何构造分析的几个概念1、、平面上的动点和刚片平面上的动点和刚片动点动点——在平面内运动的点如在平面内运动的点如铰结点铰结点刚片刚片——在平面内的刚体,即刚性薄片由于不考虑材料在平面内的刚体,即刚性薄片。

      由于不考虑材料应变,一应变,一￿ ￿根根杆件杆件或一个或一个几何不变部分几何不变部分均可看作一个刚片均可看作一个刚片 2、、体系运动的自由度体系运动的自由度自由度自由度——表示体系自由运动的程度的量表示体系自由运动的程度的量自由度的数目自由度的数目等于确定体系的位置所需要的独立的几何坐等于确定体系的位置所需要的独立的几何坐标的数目标的数目 14建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析⑴ ⑴ 平面上的一个动点有两个自由度平面上的一个动点有两个自由度xy独立变化的几何参数为:独立变化的几何参数为:x x、、y yAxyo2 2、体系运动的自由度、体系运动的自由度⑵ ⑵ 平面上的一个刚片有三个自由度平面上的一个刚片有三个自由度xyxyo⌒A独立变化的几何参数为:独立变化的几何参数为:x x、、y y、、  15建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析 约束约束——减少体系自由度的装置减少体系自由度的装置 凡能减少一个自由度的装置叫作一凡能减少一个自由度的装置叫作一个约束⑴⑴ 链杆或支座链杆链杆或支座链杆: 一根链杆具有一个约束一根链杆具有一个约束。

      xy Axyo⌒⌒Axyo⌒ 2⌒ 12 2、约束(或联系)、约束(或联系) 16建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析 ⑵⑵ 铰:用销钉连接刚片的装置铰:用销钉连接刚片的装置称为铰或圆柱铰称为铰或圆柱铰 ⅠⅡxyAxy⌒1⌒2oⅠⅡxyAxy⌒1⌒2o⌒Ⅲ3 复铰复铰:连结两个以上刚片的:连结两个以上刚片的铰称为复铰铰称为复铰 连结连结n 个刚片的复铰相当于个刚片的复铰相当于(n--1)个单铰——用数学归纳法可证 单铰单铰:连结两个刚片的铰称:连结两个刚片的铰称为单铰 一个单铰相当于两个约束一个单铰相当于两个约束 17建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析 ⑶⑶单铰与链杆的约束关系单铰与链杆的约束关系 一个单铰相当于两个链杆一个单铰相当于两个链杆ABCDO虚铰、瞬心ABC实铰ⅠⅡⅠⅡⅠⅡ实铰CDⅠⅡAB无穷远平行 ⑶⑶必要约束与多余约束必要约束与多余约束必要约束必要约束—保持几何不变所必须的约束保持几何不变所必须的约束多余约束多余约束—保持几何不变非必须的约束。

      保持几何不变非必须的约束 绝对必要约束绝对必要约束多余约束具有相对性多余约束具有相对性 18建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析§9-3 9-3 平面杆件体系自由度的计算平面杆件体系自由度的计算 1 1、一般体系自由度的计算、一般体系自由度的计算设:设:m——刚片数;刚片数; h——单铰数;单铰数; r——支座链杆数;支座链杆数; w——计算自由度;计算自由度;则:则:注:注:((1 1)刚片指本身没有多余约束的几)刚片指本身没有多余约束的几何不变部分;何不变部分;((2 2)计算自由度不是体系的实际自)计算自由度不是体系的实际自由度m=h=r=3512121+2+2+1=6w=3×5-2×6-3=0例题1解: 19建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析例题2解:m=h=r=3w=3×4-2×5-3=-1412111+2+1+1=5例题3解:m=11h=11111144317r=3w=3×11-2×17-3=-4 20建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析 2 2、铰结链杆体系自由度的计算、铰结链杆体系自由度的计算 设:设:j——结点数;结点数; b——链杆数;链杆数; r——支座链杆数;支座链杆数; w——计算自由度;计算自由度; 则:则:注:注:这里的结点必须是完全铰结点。

      这里的结点必须是完全铰结点例题4j=9b=15r=3w=2×9-15-3=0解: 21建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析3 3、可变度、可变度 体系内部的自由度称为体系的可变度体系内部的自由度称为体系的可变度4 4、结果分析、结果分析 计算自由度计算自由度w>>0,几何可变;,几何可变; w ==0,可变与否需另作分析;,可变与否需另作分析; w <<0,有多余约束,可变与否需另作分析有多余约束,可变与否需另作分析 22建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析§9-49-4平面几何不变体系组成的基本规则平面几何不变体系组成的基本规则1 1、三刚片规则、三刚片规则 三个刚片用不共线的三个单铰两两相联结三个刚片用不共线的三个单铰两两相联结, ,组成的体系组成的体系几何不变,且没有多余约束几何不变,且没有多余约束ⅠⅡⅢABCABC瞬变体系ABC常变体系条件不满足时的两种情况 23建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析ABCABCCBA三刚片规则的变种三刚片规则的变种 24建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析2 2、两刚片规则、两刚片规则 两个刚片用不全交于一点也不全平行的三个链杆相联结两个刚片用不全交于一点也不全平行的三个链杆相联结, ,或用一或用一个单铰和一个方向不通过单铰的链杆相联结个单铰和一个方向不通过单铰的链杆相联结, ,组成的体系几何不变,组成的体系几何不变,且没有多余约束。

      且没有多余约束ⅠⅡⅢABCAⅠⅡBCABCABC 25建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析2 2、两刚片规则、两刚片规则 两个刚片用不全交于一点也不全平行的三个链杆相联结两个刚片用不全交于一点也不全平行的三个链杆相联结, ,或用一个单铰和或用一个单铰和一个方向不通过单铰的链杆相联结一个方向不通过单铰的链杆相联结, ,组成的体系几何不变,且没有多余约束组成的体系几何不变,且没有多余约束AⅠⅡBCABC条件不满足时的五种情况瞬变体系平行不等长α1α2α3Δ常变体系平行等长 26建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析3 3、二元体规则、二元体规则 二元体二元体是指两根不在同一直线上的链杆联结一个新结点的装置是指两根不在同一直线上的链杆联结一个新结点的装置ⅠⅡⅢABC体系体系AB新结点C二元体规则:二元体规则:在一个体系上增加或去掉二元体,不改变体系的几何组成性质在一个体系上增加或去掉二元体,不改变体系的几何组成性质 27建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析三个规则是相通的,即铰结三角形的不变性三个规则是相通的,即铰结三角形的不变性。

      新结点 28建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析平面体系几何组成分析方法与步骤平面体系几何组成分析方法与步骤1 1、计算自由度、计算自由度 计算自由度计算自由度w w>>0 0,几何可变;,几何可变; w w≤0≤0,可变与否需作分析;但通常可略去,可变与否需作分析;但通常可略去w w 的计算 2 2、分析、分析 标明刚片和约束,说明刚片和约束之间的关系,是否标明刚片和约束,说明刚片和约束之间的关系,是否 满足规则满足规则3 3、结论、结论 29建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析例题1ⅠⅡⅢⅣ235614 30建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析例题2例题3 31建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析例题4ⅠⅡⅢⅡⅢⅠ(Ⅰ,Ⅱ)(Ⅰ,Ⅲ)(Ⅱ ,Ⅲ )(Ⅰ,Ⅱ)(Ⅱ ,Ⅲ )(Ⅰ,Ⅲ)例题5 32建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析 Ⅰ Ⅱ Ⅲ(Ⅰ,Ⅱ)(Ⅰ,Ⅲ)(Ⅱ ,Ⅲ )ⅠⅡⅢ(Ⅰ,Ⅱ)(Ⅰ,Ⅲ)(Ⅱ ,Ⅲ ) Ⅰ ⅡⅢ(Ⅰ,Ⅲ)(Ⅰ,Ⅱ)(Ⅱ ,Ⅲ )例题6(Ⅰ,Ⅲ) 33建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析应用三刚片规则时,三个(虚)铰的位置有三种情况应用三刚片规则时,三个(虚)铰的位置有三种情况αα≠0,几何不变;α=0,几何瞬变。

      情况情况1::一铰在无穷远一铰在无穷远情况情况2::两铰在无穷远两铰在无穷远αα≠0,几何不变;α=0,四根平行链杆不等长,几何瞬变;α=0,四根平行链杆等长,常变 情况情况3::三铰在无穷远三铰在无穷远几何瞬变平行不等长平行等长 34建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析例题7 35建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析1、几何不变体系的静定性几何不变体系的静定性体系计算自由度的一般公式为无约束刚片的自由度数约束数独立的平衡方程数约束力和支反力数§9-59-5 平面杆件体系的几何组成与静力特性的关系平面杆件体系的几何组成与静力特性的关系 36建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析w w不仅是自由度数,也是静力计算参数:不仅是自由度数,也是静力计算参数: 1 1、、w w>>0 0,几何可变体系或机构,,几何可变体系或机构,3 3m m>>2 2h h+ +r r, ,体系不能维持体系不能维持静静力平衡,力平衡,无无静力静力解答;解答; 2 2、、 无多余约束的几何不变体系,无多余约束的几何不变体系, w==0,, 3 3m m==2 2h h+ +r r,独立的,独立的平衡方程数等于未知力的个数。

      用平衡方程数等于未知力的个数用静力平衡静力平衡方程即可确定所有反方程即可确定所有反力和内力,力和内力,静定结构静定结构 3 3、、 有多余约束的几何不变体系,有多余约束的几何不变体系, w<<0,, 3 3m m<<2 2h h+ +r r,独立的,独立的平衡方程数小于未知力的个数仅用平衡方程数小于未知力的个数仅用静力平衡静力平衡方程不能确定所有方程不能确定所有反力和内力,反力和内力,超静定结构超静定结构 37建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析2、体系的静力解答的特性体系的静力解答的特性1、无多余约束的几何不变体系、无多余约束的几何不变体系—静定结构静定结构 独立的平衡方程数等于未知力的个数独立的平衡方程数等于未知力的个数 由线性代数,方程组的解的一般形式可写成:由线性代数,方程组的解的一般形式可写成:并且解是唯一的,这一性质称为并且解是唯一的,这一性质称为静定结构解答的唯一性静定结构解答的唯一性2、有多余约束的几何不变体系、有多余约束的几何不变体系—超静定结构超静定结构 独立的平衡方程数小于未知力的个数。

      独立的平衡方程数小于未知力的个数 由线性代数,方程组的解有无穷多组解所以,对由线性代数,方程组的解有无穷多组解所以,对超静定结构,超静定结构,满足平满足平衡条件的解有无穷多组只有既满足平衡条件又满足变形条件的解才是唯一衡条件的解有无穷多组只有既满足平衡条件又满足变形条件的解才是唯一的 38建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析3、瞬变体系、瞬变体系 图示瞬变体系,当发生微小位移图示瞬变体系,当发生微小位移后,由后,由A点的平衡条件可求得:点的平衡条件可求得:AP((αPx1x2((αA即瞬变体系在外力作用下,内力趋于无穷,体系不能维持平衡即瞬变体系在外力作用下,内力趋于无穷,体系不能维持平衡瞬变体系不能作为结构使用瞬变体系不能作为结构使用 39建筑力学建筑力学平面体系的几何组成分析平面体系的几何组成分析3、按结构内力的计算方法分类按结构内力的计算方法分类((1 1)静定结构)静定结构 几何特征几何特征是没有多余约束的几何不变体系;是没有多余约束的几何不变体系; 静力特征静力特征是仅用静力平衡条件即可确定所有反力和内力。

      是仅用静力平衡条件即可确定所有反力和内力2 2)超静定结构)超静定结构 几何特征几何特征是有多余约束的几何不变体系;是有多余约束的几何不变体系; 静力特征静力特征是仅用静力平衡条件不能确定所有反力和内力,是仅用静力平衡条件不能确定所有反力和内力,还要使用变形协调条件才能求得所有反力和内力还要使用变形协调条件才能求得所有反力和内力。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.