好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

最优估计之卡尔曼滤波器的发散抑制方法ppt课件.ppt

40页
  • 卖家[上传人]:re****.1
  • 文档编号:591079897
  • 上传时间:2024-09-16
  • 文档格式:PPT
  • 文档大小:742KB
  • / 40 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 最优估计1 第第7 7章章 卡尔曼滤波器的发散卡尔曼滤波器的发散抑制方法抑制方法 l 滤波的发散现象 l 限定增益滤波 l 误差方差阵加权滤波 l 衰减记忆滤波 l 限定记忆滤波 l 增广状态滤波 l 平方根滤波 2 上一章要点回顾上一章要点回顾问题:卡尔曼滤波最优的条件?否则滤波易发散模型精确,统计特性已知3 内容提要内容提要针对卡尔曼滤波的发散问题,讨论了若干抑制滤波发散的方法对于模型误差导致的发散,可以通过直接和间接限定增益的方法增强新测量数据的作用,如限定增益滤波限定增益滤波、误差方差阵加权误差方差阵加权滤波滤波;可以增加新数据的比重,减小旧数据的比重,如衰减记衰减记忆滤波忆滤波和限定记忆滤波限定记忆滤波;也可以将模型误差作为状态的一部分而估计,即增广状态滤波增广状态滤波对于计算发散,可以采用平方根滤波法平方根滤波法,减小截断误差的影响 4 7.1 滤波的发散现象滤波的发散现象发散:发散:实际的估计误差超过理论预计值,非常大,甚至趋于无穷 5 两类发散现象两类发散现象二者区别视在发散:滤波误差大,但有界;真实发散:滤波误差趋于无穷6 各类发散的解决方案各类发散的解决方案视在发散的解决方法:(1)如果是由模型引起的,可通过改变系统的结构及参数,使系统的状态完全能控能观;(2)如果是数值发散,可以采用双字长运算,减少有效数字损失,也可以采用平方根滤波方法。

      真实发散的解决方法:削弱预测在滤波估计中的作用,而增加新息的作用 7 7.2 限定增益滤波限定增益滤波来自模型来自观测离散系统卡尔曼最优估计:离散系统卡尔曼最优估计:限定增益滤波的思想:限定增益滤波的思想:降低模型误差产生的影响,削弱最优估计公式中状态预测的作用,而增加新息的作用,这需要通过限定增益来实现 8 例:若建立系统模型时忽略了常数 c,即:9 10 滤波发散了!11 发散原因?建模时忽略了常数?实际上,建模时即便考虑了常数,但如果不准确,即若取模型:12 克服此类发散的方法:克服此类发散的方法:发散得到抑制M 的取法:的取法:M = ?原则:滤波的均方误差(误差方差)应小于观测误差方差13 7.3 误差方差阵加权滤波误差方差阵加权滤波 方法思想:方法思想:通过加权的方法人为地增大滤波误差方差阵,从而间接地增间接地增大增益阵大增益阵,抑制真实发散1. 人为加权法:人为加权法:两种加权方法:人为加权法和自动加权法14 增益不会衰减到0,发散得到抑制15 2. 自动加权法:自动加权法:由于滤波产生发散的直接原因是实际估计误差超过理论预计值 ,因新息中包含了实际估计误差的信息,可用其判断滤波器是否发散。

      判据:判据:当此式不成立时,滤波发散16 滤波方程:滤波方程:17 7.4 衰减记忆滤波衰减记忆滤波 方法思想:方法思想:是一种方差加权法方差加权法对滤波器中的方差阵(包括系统噪声方差、观测噪声方差、初始估计误差方差)进行加权,以逐渐减小旧的测量数据的比重,同时增加新数据的比重 权值为指数函数或幂函数1. 指数加权法:指数加权法:18 这相当于采用新模型:对模型(7.4.6)在N时刻以后滤波,得----------------- (7.4.6)19 滤波方程组:滤波方程组:20 滤波方程组:滤波方程组:21 2. 幂函数加权法:幂函数加权法:滤波方程组:滤波方程组:22 7.5 限定记忆滤波限定记忆滤波方法思想:方法思想:23 卡尔曼滤波基本方程的建立过程卡尔曼滤波基本方程的建立过程: 限定记忆滤波思想限定记忆滤波思想: 24 限定记忆滤波实现过程限定记忆滤波实现过程: 25 无动态噪声的状态方程和观测方程: 26 27 28 (3)利用前两个步骤得到 xk 的限定记忆滤波方程:两式相减29 加上前面已得到的估计公式:则得限定记忆的滤波公式状态估计公式误差方差公式增益矩阵公式30 (4)初值的选取由动态方程可得卡尔曼滤波基本公式:31 7.6 增广状态滤波增广状态滤波方法思想:方法思想:将动态偏差作为增广的状态进行估计,解决模型误差引起的发散问题。

      同时,偏差的估值还可以用于模型校正线性系统模型:引入增广状态:增广模型方程为:32 一步预报方差阵(分块矩阵):一步预报方差阵(分块矩阵):估计误差方差阵(分块矩阵):估计误差方差阵(分块矩阵):33 上式中,34 将上式展开,得展开,得:35 增广系统的卡尔曼滤波器方程: 展开得增广系统的卡尔曼滤波方程:其中,36 7.7 平方根滤波平方根滤波解决由舍入误差引起的发散问题方法思想:方法思想:在滤波过程中,采用误差方差矩阵的平方根形式来传播方差矩阵,从而使方差阵在传播过程中始终保持非负定 方法步骤:方法步骤:37 对于非负定矩阵 P:注:矩阵分解方式的不唯一性导致平方根滤波方法也有不同的形式38 平方根滤波的平方根滤波的PotterPotter算法算法 系统方程和量测方程: 时间更新:时间更新:39 测量更新:测量更新:若测量向量为 m 维,量测噪声方差阵为对角阵,即则平方根滤波的测量更新可采用序贯处理来实现。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.