
中考数学压轴题精编-安徽篇(试题及答案).docx
6页中考数学压轴题精编-安徽篇(试题及答案) 2022中考数学压轴题精编----安徽篇 1.(安徽省)如图,已知△ABC ∽△A 1B 1C 1,相似比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1. (1)若c =a 1,求证:a =kc ; (2)若c =a 1,试给出符合条件的一对△ABC 和△A 1B 1C 1,使得a 、b 、c 和a 1、b 1、c 1都是正整数,并加以说明; (3)若b =a 1,c =b 1,是否存在△ABC 和△A 1B 1C 1,使得k =2?请说明理由. 1.解(1)证:∵△ABC ∽△A 1B 1C 1,且相似比为k (k >1),∴ 1 a a =k ,∴a =ka 1 又∵c =a 1,∴a =kc ·················································································· 3分 (2)解:取a =8,b =6,c =4,同时取a 1=4,b 1=3,c 1=2 ······························ 8分 此时1a a =1b b =1 c c =2,∴△ABC ∽△A 1B 1C 1且c =a 1 ····································· 10分 注:本题也是开放型的,只要给出的△ABC 和△A 1B 1C 1符合要求就相应赋分. (3)解:不存在这样的△ABC 和△A 1B 1C 1.理由如下: 若k =2,则a =2a 1,b =2b 1,c =2c 1 又∵b =a 1,c =b 1,∴a =2a 1=2b =4b 1=4c ∴b =2c ································································································· 12分 ∴b +c =2c +c =3c <4c =a ,而b +c >a 故不存在这样的△ABC 和△A 1B 1C 1,使得k =2. ··········································· 14分 注:本题不要求学生严格按反证法的证明格式推理,只要能说明在题设要求下k =2的情况不可能即可. 2.(安徽省B 卷)如图,Rt △ABC 内接于⊙O ,AC =BC ,∠BAC 的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结OG . (1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE =BF ; (3)若OG ·DE =3(2-2),求⊙O 的面积. B C A A 1 a b c B 1 C 1 a 1 b 1 c 1 A C B F D E O G 2022中考数学压轴题精编----安徽篇 1.(安徽省)如图,已知△ABC ∽△A 1B 1C 1,相似比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1. (1)若c =a 1,求证:a =kc ; (2)若c =a 1,试给出符合条件的一对△ABC 和△A 1B 1C 1,使得a 、b 、c 和a 1、b 1、c 1都是正整数,并加以说明; (3)若b =a 1,c =b 1,是否存在△ABC 和△A 1B 1C 1,使得k =2?请说明理由. 1.解(1)证:∵△ABC ∽△A 1B 1C 1,且相似比为k (k >1),∴ 1 a a =k ,∴a =ka 1 又∵c =a 1,∴a =kc ·················································································· 3分 (2)解:取a =8,b =6,c =4,同时取a 1=4,b 1=3,c 1=2 ······························ 8分 此时1a a =1b b =1 c c =2,∴△ABC ∽△A 1B 1C 1且c =a 1 ····································· 10分 注:本题也是开放型的,只要给出的△ABC 和△A 1B 1C 1符合要求就相应赋分. (3)解:不存在这样的△ABC 和△A 1B 1C 1.理由如下: 若k =2,则a =2a 1,b =2b 1,c =2c 1 又∵b =a 1,c =b 1,∴a =2a 1=2b =4b 1=4c ∴b =2c ································································································· 12分 ∴b +c =2c +c =3c <4c =a ,而b +c >a 故不存在这样的△ABC 和△A 1B 1C 1,使得k =2. ··········································· 14分 注:本题不要求学生严格按反证法的证明格式推理,只要能说明在题设要求下k =2的情况不可能即可. 2.(安徽省B 卷)如图,Rt △ABC 内接于⊙O ,AC =BC ,∠BAC 的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结OG . (1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE =BF ; (3)若OG ·DE =3(2-2),求⊙O 的面积. B C A A 1 a b c B 1 C 1 a 1 b 1 c 1 A C B F D E O G 。
