好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

[信息与通信]第二章收缩电阻0919.ppt

92页
  • 卖家[上传人]:hs****ma
  • 文档编号:588502998
  • 上传时间:2024-09-08
  • 文档格式:PPT
  • 文档大小:5.98MB
  • / 92 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第二章第二章 接触电阻理论接触电阻理论周怡琳2024/9/8第2章接触电阻理论1 接触电阻的形成过程复杂,需探讨的课题:1.金属接触时的界面状况2.压力与变形的规律3.实际接触点分布与接触电阻的关系4.影响接触电阻的各种因素 2024/9/8第2章接触电阻理论2探讨课题探讨课题 一、金属表面的微观形态1.机械加工的表面在显微镜里观察都是凸凹不平的;2.表面特征的参数–波度–粗糙度:例–与磨损有关:峰顶高度、峰顶斜率、峰顶半径–与润滑剂储存有关:谷底深度、宽度2024/9/8第2章接触电阻理论3§2.1 电接触内表面电接触内表面 一、金属表面的微观形态一、金属表面的微观形态◦定义表面粗糙度根据表面轮廓波形图,可以用微观凸丘的高度z和其峰顶曲率半径r的统计平均值来定义加工表面的粗糙度,或简单地可用凸丘的高来定义加工表面的粗糙度Greenwood和Williamson对不同加工方法的钢表面测得的微观凸丘高z的平均值列入表中,标准偏差约为25%凸丘斜度约5度以内,即凸丘峰顶的平均曲率半径为凸丘高的几倍到100倍加工方法 布轮抛光 刮净 磨光 车 冲z/mm0.11610 1002024/9/8第2章接触电阻理论4 1.加工对表面形貌的影响①同种材料用不同的加工方法或两种重叠的加工方法所得的名义平面表面,其表面轮廓波形图都是不同的;多次加工,同一部位多次累积,加工部位随机分布,高度分布大体是正态分布:喷砂处理、电镀表面。

      表面一次加工,既不重复累积,又不随机分布:车削表面受某最大尺寸控制:磨床虽然表面高度分布不一定是正态的,但从平均中心线以上的微观峰顶高度大体是正态分布②在一定加工方法所得到的同一表面上,沿两个垂直坐标所得的轮廓图不一定完全相同,取决于加工工艺2.表面形貌的测量:三维轮廓表示 2024/9/8第2章接触电阻理论5二、加工后的表面实际形貌二、加工后的表面实际形貌 1.两清洁金属表面接触◦假设条件:实际粗糙金属表面,去掉表面膜,当两金属面接触时,如果材料硬度无限大(理想刚体), 则无论外加接触力有多大,材料都不会产生任何变形◦结果点接触:对于两圆柱面轴向交叉接触,实际接触点就只有一个线接触:对于两圆柱面轴向平行接触,实际接触点最多只有两个面接触:对于两平面接触,实际的接触点最多只有三个◦但材料实际硬度却不是无限大,在外力作用下,材料却会产生变形接触力较小时, 材料产生弹性变形,力超过一定限度,材料将产生塑性变形2024/9/8第2章接触电阻理论6三、两清洁金属表面接触特征三、两清洁金属表面接触特征 2.两实际接触面接触过程:◦两表面开始接触时,只有很少的实际接触点,实际接触面积非常小,单位实际接触面积受到的力非常大;◦起始接触点先产生弹性变形,然后向塑性变形过渡;◦当点的实际接触面增大,两金属间空隙部分相互靠近,继续产生新的实际接触点;◦最后,当总的实际接触面积扩大到支持力与外力平衡时,接触过程结束。

      2024/9/8第2章接触电阻理论7三、两清洁金属表面接触特征三、两清洁金属表面接触特征 2024/9/8第2章接触电阻理论8接触表面上的接触斑点接触表面上的接触斑点 3. 基本概念◦名义接触面积◦机械接触斑点:实际发生机械接触的小面简称“接触斑点”◦导电斑点:由于金属表面一般都覆盖着不导电的膜层,因而在实际接触面内,只有少部分膜被压破的地方才能形成金属与金属的直接接触, 电流实际上只能从这些更小的金属接触中通过,国际上通常称为“a-斑点”2024/9/8第2章接触电阻理论9三、两清洁金属表面接触特征三、两清洁金属表面接触特征 1.求理想光滑球体接触a斑点半径◦分析外加接触力与实际接触面积之间的关系,常借用①理想光滑球体受力变形的赫芝公式②或刚性球对平面做压痕实验定义的材料硬度关系2024/9/8第2章接触电阻理论10四、理想光滑球体接触斑点四、理想光滑球体接触斑点 2024/9/8第2章接触电阻理论11四、理想光滑球体接触斑点四、理想光滑球体接触斑点①由赫芝公式导出实际接触面Ab半径a具有r1和r2的两理想光滑弹性球相互接触,在接触力P的作用下产生弹性形变, (2-1) E1, E2:两球材料的弹性模量 ν1, ν 2:两球材料的泊松比 2024/9/8第2章接触电阻理论12四、理想光滑球体接触斑点四、理想光滑球体接触斑点•球面对无限大平面接触,且材料相同r1=r,r2=∞E1=E2=Eν1= ν2 = ν 则(2-1)变成 (2-1)又因为 ν Fe=0.28,ν Cu=0.36, ν Ag=0.39近似ν取平均值为 0.3,则 (2-2) 2024/9/8第2章接触电阻理论13四、理想光滑球体接触斑点四、理想光滑球体接触斑点②压力在接触圆平面上,单位面积受力不均匀,距实际接触面Ab中心x处的压力为: (2-3)点圆Ab的中心点,压力最大,为平均压力的1.5倍(2-4) 2024/9/8第2章接触电阻理论14四、理想光滑球体接触斑点四、理想光滑球体接触斑点③触点变形产生弹性形变的实际接触面积Ab= πa2柔性系数或柔量:两球面中心相互趋近的距离y (2-5)以上关系也适用于两个相同材料、相同半径的圆柱形元件交叉接触的情况。

      对于不同半径、不同材料的圆柱交叉接触,实际接触面不是圆而是椭圆,对于这种情况,罗尔克导出更复杂公式 四、理想光滑球体接触斑点四、理想光滑球体接触斑点若球面与平面相接触,r1=r,r2=∞,则由(2-5)得: (2-6) 其中:h=y/2为球面对平面的压印深度,余下的y/2 则是球面产生的弹性变形点圆平面面积A可用柔量表示: Ab= πa2= πyr(2-7)2024/9/8第2章接触电阻理论15 四、理想光滑球体接触斑点四、理想光滑球体接触斑点④比深度当点圆中心处应力很大,达到材料的屈服限度 时,开始塑性变形令压印深度h与r的比为D,r为凹痕面曲率半径 (2-8) 称为压痕的比深度由(2-8)式可知不用计算h, D就能计算出来实际上刚性球硬度不是无限大,所以上式应做一定的修改.2024/9/8第2章接触电阻理论16 四、理想光滑球体接触斑点四、理想光滑球体接触斑点2.材料硬度与压力的关系①平均压力设刚性球硬度无限大, r为凹痕面曲率半径,相应的凹陷曲面面积为As,凹痕口半径a,相应面积为A.在As、A 面上取元面积dAs、dA, dAs法线和接触力P之间夹角为α。

      垂直于dAs的压力为pdAs, 则在p方向有: pdAs cos α =pdA 积分: — ,对凹痕壁的平均压力◦又因为 故近似的认为:2024/9/8第2章接触电阻理论17 ②平均压力与比深度之间的关系◦Holm等人得出的平均压力和压印比深度的关系曲线当平均压力增加时,开始,D增加很快;但当D达到0.03时,P的增加甚微当D>0.03,平均压力基本上是一常数此时P=H(材料硬度)◦曲线迅速上升部分为弹性变形的情况;D>0.03后为完全塑性变形的情况;介于两者之间的部分为弹塑性变形(既有弹性变形也有塑性变形)2024/9/8第2章接触电阻理论18四、理想光滑球体接触斑点四、理想光滑球体接触斑点 ③接触硬度在考虑材料的硬度时,为了应用于接触问题的方便起见,不用压痕凹陷面的面积来定义硬度,而是用压痕口的面积来定义硬度:称接触硬度压痕口面积等效于接触力承受面Ab,如果整个接触面完全塑性变形,P=HAb2024/9/8第2章接触电阻理论19四、理想光滑球体接触斑点四、理想光滑球体接触斑点 四、理想光滑球体接触斑点四、理想光滑球体接触斑点宏观的说,名义平面之间的接触,其等效的接触硬度比材料的定义硬度小,可用一个小于1的因数乘上材料定义硬度来考虑综合效应, 于是 或  ξ是变形函数, ξ<1,是D的函数通常 ξ <0.2 为弹性变形 ξ =1为完全塑性变形 0.2<ξ <12024/9/8第2章接触电阻理论20 一、接触电阻的概念1.接触电阻的物理本质就是电流通过导电斑点产生收缩效应引起的金属电阻增量(收缩电阻)与表面膜电阻之和。

      R=Rc+Rf 2024/9/8第2章接触电阻理论21§2.2 收缩电阻的计算收缩电阻的计算 2.对接触电阻进行理论分析的必要性◦电接触应用广泛,理论上精确计算接触电阻很困难◦在一定的简化条件下,对接触电阻作出理论分析,得出定量关系从本质上了解接触电阻对接触电阻作数量级的估算定量估计影响接触电阻的因素借助实验导出半经验或经验公式2024/9/8第2章接触电阻理论22一、接触电阻的概念一、接触电阻的概念 1.收缩电阻的形成◦由于存在表面粗糙,导体之间实际接触面积只是名义接触面积的一小部分◦电流线通过导电斑点时收缩变形,路程加长,引起电阻增加-收缩电阻Rc2.收缩电阻与导电斑点的大小、形状、数目、分布有关3.影响导电斑点的因素比较复杂◦接触元件的材料、表面粗糙度、接触形式、表面膜形状、接触力、电流大小、通电时间等2024/9/8第2章接触电阻理论23二、收缩电阻的概念二、收缩电阻的概念 2024/9/8第2章接触电阻理论24电流线通过接触区时产生收缩的示意图电流线通过接触区时产生收缩的示意图 1.模型◦当接触面为理想平面电流线保持平行通过导体界面,不产生畸变,因此没有因接触而产生的附加电阻;◦当接触面为理想球面接触时,电流线在触点界面发生变形,电流通过路径加长,通过的截面大大缩小形成了附加电阻—收缩电阻Rc。

      2024/9/8第2章接触电阻理论25三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算◦设流过接触元件的电流为I, 离开接触界面一定距离(电流收缩区外)取两等位面A、B,测量A、B 之间的电阻如果接触界面为理想平面时,A、B之间的电阻为ROAB如果接触界面为球面接触时,相同A、B之间的电阻为RAB则收缩电阻 Rc = RAB-ROAB 在工程实际应用中,由于ROAB比RAB小的多,常将ROAB忽略接触电阻◦如果导电斑点表面存在一定电导率的膜层,则触点间的接触电阻R=Rc+Rf2024/9/8第2章接触电阻理论26 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算2.单点收缩电阻的计算①假设一个单独的a斑点,假定为圆形红外显微镜探测到a-spot实际的形状近似于椭圆,长、短半轴分别为、;假定导电面Ac的形状为圆形,即==a,这是最常用的模型长收缩收缩区范围比导电斑点大得多的情况称之为“长收缩”ROAB可忽略导电斑点尺寸与收缩区域范围比较相差不大,ROAB不能忽略 称为“短收缩”。

      2024/9/8第2章接触电阻理论27 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算导电斑点界面上没有表面膜存在, 因而膜电阻为零两接触元件材料相同而且是均质的 忽略温度对电阻率的 影响, 在收缩区内各点的电阻率为常数导电斑点界面上的电位处处相等,并取此导电面的电位为零忽略热电势和接触电势两接触元件的收缩电阻对称并相等,只需分析任一接触元件半无限大空间的收缩电阻2024/9/8第2章接触电阻理论28 2024/9/8第2章接触电阻理论29a-a-斑点附近电流线和等位面剖面图斑点附近电流线和等位面剖面图 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算②收缩电阻的计算离开Ac平面的等位面为一系列的半椭球面,半椭球体的高度为μ,半椭球体可用下列方程式来表示: r,z为圆柱坐标 半椭球体的等位面之间的电阻为2024/9/8第2章接触电阻理论30 每个接触体的扩散电阻(spreading resistance)当μ 时,即远离收缩区时触点的收缩电阻为扩散电阻的2倍,即当一个触点是由两个不同材料的接触体组成时,收缩电阻为:1,2为两种材料的电阻率。

      2024/9/8第2章接触电阻理论31三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算③收缩电阻也可由具有合适边界条件的Laplace方程的一个解法计算出来拉氏方程用于真空中电极Ac与A1的静电电容问题,其边界条件在数学上类似于导电媒质中的电阻问题收缩电阻可由以下公式精确给出2024/9/8第2章接触电阻理论32 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算当a<

      这个值很小,因此,当两个表面间的电接触面积不需太大就可以产生一个电阻足够低的电接触斑点半径接触电阻0.010.880.18.8×10-218.8×10-3108.8×10-42024/9/8第2章接触电阻理论35 ⑤说明:A.Holm用实验证明了当导电面Ab的电位并不处处相等时,即Ab不是等位面时,对收缩电阻的计算结果影响很小B.当Ab面不是圆形而是椭圆形时,只要=a2,收缩电阻的变化也很小C.当导体材料选定时,即一定时,Rc是a的函数,aRc,通过计算可知,对于Cu材料(=1.7510-8mm),当a=10μm时,Rc1m因此,要想两接触体之间有良好的接触,接触面并不需很大D.工程上广泛用来分析和计算清洁接触面之间的收缩电阻2024/9/8第2章接触电阻理论36三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算3.当理想球形与平面接触时◦完全是弹性变形则P:压力 r:球半径2024/9/8第2章接触电阻理论37 ◦若呈塑性变形,则为: H:接触材料的硬度 (N/m2 );Ab: a-斑点的面积( m2 )2024/9/8第2章接触电阻理论38三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算 三、收缩电阻的物理模型和计算三、收缩电阻的物理模型和计算◦若呈弹塑性变形,则为: H:接触材料的硬度 (N/m2 );Ab: a-斑点的面积( m2 )2024/9/8第2章接触电阻理论39 1.导电斑点尺寸对收缩电阻的影响①收缩电阻的分析结果是其导电机理与一般金属导电机理相同条件下得到的结论。

      ②Wexler指出:导电斑点足够大,电流经过收缩区通过导电斑点是纯扩散运动,与金属导电相同电流线连续、平稳收缩半径小于接触介质中电子平均自由行程时,电流通过收缩斑点时,不纯粹是扩散,收缩边界上的电子会产生散射,引起附加电阻2024/9/8第2章接触电阻理论40四、影响收缩电阻的因素四、影响收缩电阻的因素 四、影响收缩电阻的因素四、影响收缩电阻的因素③Knudsen诺申电阻–导电斑点尺寸足够小,电流通过导电斑点产生收缩电阻一般由以下两个分量组成–其中K=s/a,–s,电子平均自由行程;a,导电斑点半径–Γ(K),与K有关的函数K=0时, Γ(K)=10>1时,诺申电阻4 Kρ/3πa不能忽略K增大时, Γ(K)缓慢减小为9π2/128=0.692024/9/8第2章接触电阻理论41 四、影响收缩电阻的因素四、影响收缩电阻的因素2.导电斑点形状对收缩电阻的影响①椭圆形的a-斑点形成条件:接触体的表面形貌并非各向同性以下这些非圆形a-spots主要在电力连接器的接触表面存在椭圆形接触斑点:Holm指出长﹑短半径分别为 α、β的椭圆形接触斑点的扩散电阻(单边接触体的收缩电阻)为: 式中,f()是形状参数; ac是等效的圆形接触斑点的半径。

      2024/9/8第2章接触电阻理论42 f() 和的关系椭圆形接触斑点的收缩电阻为: Rc=2Rs(α,β)2024/9/8第2章接触电阻理论43四、影响收缩电阻的因素四、影响收缩电阻的因素 ②矩形a-斑点Aichi和Taharama由实验数据进行回归分析后得到矩形斑点的扩散电阻为:上式适合于长宽比l/w>10的情况w,l为矩形斑点的宽度和长度,单位为mmAb是矩形斑点的面积,Ab=wl(mm2)k是取决于斑点宽度w的参数,当w从110mm时,k从0.3612024/9/8第2章接触电阻理论44四、影响收缩电阻的因素四、影响收缩电阻的因素 矩形斑点的扩散电阻和面积之间的关系如图矩形斑点的收缩电阻2024/9/8第2章接触电阻理论45四、影响收缩电阻的因素四、影响收缩电阻的因素 ③正方形a-斑点Nakamura的严密的数值分析得出,边长为2L的正方形斑点的扩散电阻为:当a=L时,Rs比圆形收缩扩散电阻大70%收缩电阻2024/9/8第2章接触电阻理论46四、影响收缩电阻的因素四、影响收缩电阻的因素 ④圆环和正方环行a-斑点正方环形和圆环形斑点的示意图扩散电阻R0为正方形或圆形接触斑点的扩散电阻。

      f()为形状参数,对圆环形斑点,=t/a,t是圆环的厚度,a是外圆半径对正方环形斑点,=t/L,t是方环的厚度,L是外正方形宽度的一半2024/9/8第2章接触电阻理论47四、影响收缩电阻的因素四、影响收缩电阻的因素 四、影响收缩电阻的因素四、影响收缩电阻的因素Cu-Cu界面中相同面积(100 μm2)不同形状的收缩电阻接触类型半径(μm)长度(μm)宽度(μm)环厚度(μm)电阻(mΩ)圆盘形5.641.55正方形10103.04矩形5020.43环型16.4110.712024/9/8第2章接触电阻理论48 一、多斑点收缩电阻问题1.“长收缩”情况 ①假定条件:n个导电斑点的半径均相等,a1=a2==ai==an=a,斑点与斑点之间的距离远大于斑点的半径,通过各个接触点的电流对周围触点的电位没有任何影响2024/9/8第2章接触电阻理论49§ 2.3 接触电阻的一般模型接触电阻的一般模型 一、多斑点收缩电阻问题一、多斑点收缩电阻问题②收缩电阻的计算各个斑点的电阻相等;在电路上是并联关系 总的接触面积为:平均半径:总的收缩电阻为:R0为接触面内为等面积的单点接触时的收缩电阻。

      2024/9/8第2章接触电阻理论50 ③讨论:收缩电阻范围10-4~10-3Ω接触过程:当两个表面相接触时,先是最高的峰顶接触,压力增加后,峰顶由弹性变形后变为塑性变形,并有更多的峰顶接触塑性变形后接触面积增大,单位面积的压力减少,最后塑流停止一般接插件、开关及电刷等滑动电接触表面,由于压力不大,点圆相互间隔很大,可认为是长收缩情况 2024/9/8第2章接触电阻理论51一、多斑点收缩电阻问题一、多斑点收缩电阻问题 一、多斑点收缩电阻问题一、多斑点收缩电阻问题④对于峰顶都呈弹性变形时,收缩电阻为⑤对于峰顶呈弹塑性变形,收缩电阻为 2024/9/8第2章接触电阻理论52 一、多斑点收缩电阻问题一、多斑点收缩电阻问题例:一对材料为金的接触点,接触压力为0.5N,假定接触点数为10,求:收缩电阻和接触斑点半径金的硬度H=2.5108N/m2,电阻率=2.3510-8m,变形系数=0.7 ) 解:2024/9/8第2章接触电阻理论53 2.“短收缩”情况 ①条件实际上,接触面内各斑点之间靠得很近,通过接触点各自的电流对周围接触点的电位有影响计算收缩电阻时,需考虑彼此影响所增加的电阻值。

      假定n个圆形斑点都有相同的半径a2024/9/8第2章接触电阻理论54一、多斑点收缩电阻问题一、多斑点收缩电阻问题 一、多斑点收缩电阻问题一、多斑点收缩电阻问题②收缩电阻Rs :自身电阻,是所有实际接触点电阻的并联值,Ri:相互电阻:相互电阻的Holm半径或点集半径2024/9/8第2章接触电阻理论55 一、多斑点收缩电阻问题一、多斑点收缩电阻问题③值在n较大时,一般接近名义接触面积An的半径,即 2024/9/8第2章接触电阻理论56图 Ab,An,及a之间的关系 n个小接触斑点的总面积为Ab,则 式中,2024/9/8第2章接触电阻理论57一、多斑点收缩电阻问题一、多斑点收缩电阻问题 § 2.4 接触压力对收缩电阻的影响接触压力对收缩电阻的影响一、微观表面加压变形过程1.问题:从P=ξHAb中可知,接触界面达到稳定状态后,可以看成是等效塑性变形但没有分析接触过程,也没有涉及微观峰顶的分布情况Greenwood和Williamson研究了一个一般形式的数学模型,满足Ab正比于P2024/9/8第2章接触电阻理论59 2.模型具有微观凸丘的名义平面与一理想光滑平面接触;名义平面表面的微观起伏用各个凸丘的高度z和顶部的曲率半径β来表示;峰顶加载后的位移不影响周围峰顶高度;如果已知z和β的分布函数,可用统计方法求出Ab与P的关系。

      2024/9/8第2章接触电阻理论60一、微观表面加压变形过程一、微观表面加压变形过程 一、微观表面加压变形过程一、微观表面加压变形过程3.求解设各凸丘顶点曲率半径β相同,凸丘高度z随机变化,概率密度为φ(z),则某一特定凸丘超过某一参考平面的高,在z和z+dz之间的概率是φ(z)dz,设光滑平面与粗糙平面的参考平面之间距为d,则高度为z(z>d)的任何一个微观峰顶与平面的接触概率为:若在名义接触面积An内有N个峰顶,则粗糙平面与理想光滑平面接触后,可能的接触点数目为2024/9/8第2章接触电阻理论61 一、微观表面加压变形过程一、微观表面加压变形过程P1,任一峰顶所受压力A1,该峰顶真实接触面积a1,该点圆半径G1,该峰顶接触后产生的电导2024/9/8第2章接触电阻理论62 一、微观表面加压变形过程一、微观表面加压变形过程4.结果①峰高分布为指数分布函数则,总2024/9/8第2章接触电阻理论63 一、微观表面加压变形过程一、微观表面加压变形过程A.峰顶服从弹性变形规律时2024/9/8第2章接触电阻理论64 一、微观表面加压变形过程一、微观表面加压变形过程总压力、接触面积、电导和接触点数 2024/9/8第2章接触电阻理论65 一、微观表面加压变形过程一、微观表面加压变形过程结论:接触压力与接触面积成正比接触压力与接触点数成正比接触点数随压力增加而增加,总的接触面积也随之增加,平均接触面积保持不变B.峰顶服从塑性变形规律时接触压力与接触面积也是呈线性关系2024/9/8第2章接触电阻理论66 一、微观表面加压变形过程一、微观表面加压变形过程②峰高分布为正态分布函数结论:平均压力P由10-3Kg增加到102Kg,平均压力由0.2E(σ/β)1/2增加到0.4E(σ/β)1/2 ,仅变化2倍左右;平均压力可认为是0.25E(σ/β)1/2,称为弹性硬度2024/9/8第2章接触电阻理论67 一、微观表面加压变形过程一、微观表面加压变形过程5.讨论①两接触面都是粗糙平面,弹性硬度在0.36~0.6E(σ/β)1/2范围内变化;②负荷加大,出现塑性变形,Williamson用塑性指数表示从弹性变形到塑性变形的转换。

      •Φ<0.6,峰顶呈弹性变形•Φ>1,峰顶呈塑性变形③两接触表面之间相对滑动时,塑性指数随滑动时间而降低,因为表面发生冷作硬化2024/9/8第2章接触电阻理论68 1.曲线◦几种不同材料的收缩电阻Rc和接触压力P之间的关系2.现象:•当接触压力P由小增大时,收缩电阻Rc减小;•当接触压力进一步增大时,Rc的减小变得非常缓慢;•当接触压力由大减小时,Rc的增加极其缓慢 2024/9/8第2章接触电阻理论69二、二、接触压力对收缩电阻的影响接触压力对收缩电阻的影响 Au接触表面的收缩电阻与接触压力P的关系2024/9/8第2章接触电阻理论70二、二、接触压力对收缩电阻的影响接触压力对收缩电阻的影响 曲线(1):计算结果曲线(2):压力增加曲线(3):压力减小2024/9/8第2章接触电阻理论71二、二、接触压力对收缩电阻的影响接触压力对收缩电阻的影响 Ag(90%)-Pd(10%)接触表面的收缩电阻与接触压力P的关系 实线:干净表面 虚线:Cu表面暴露于空 气中几分钟后Cu接触表面的收缩电阻与接触压力P的关系2024/9/8第2章接触电阻理论72二、二、接触压力对收缩电阻的影响接触压力对收缩电阻的影响 3.解释:1)当接触压力增加时,两接触表面相互移近,接触斑点数随之增加,从而使真实的接触面积增加,而使收缩电阻降低。

      应注意的是此时平均接触面积保持不变 2)当接触压力增加时,一些接触斑点的变形从弹性变形变成塑性变形,而使接触表面发生永久变平,从而使收缩电阻减少3)大接触压力时造成的接触斑点的永久变平和粘结使得当接触压力减小时,接触电阻的增加非常缓慢2024/9/8第2章接触电阻理论73二、二、接触压力对收缩电阻的影响接触压力对收缩电阻的影响 1.实验◦Williamson等人发现将球体压于平面上的压力加得很大时,平面的压坑中的粗糙度仍然保持原来的状态◦设计了一个加压器结构,目的是严格限制表面塑流其中加压头和加压容器都是硬质钢,样品材料为铝,样品和容器壁的间隙很小2.现象◦当压力加大后,表面微观峰顶明显被压平◦继续加压,峰顶变平变得缓慢2024/9/8第2章接触电阻理论74三、三、接触压力接触压力P对真实接触面积对真实接触面积Ab的影响的影响 加压器结构 限制表面塑流后,表面变形(Williamson) 与接触压力之间的关系2024/9/8第2章接触电阻理论75三、三、接触压力接触压力P对真实接触面积对真实接触面积Ab的影响的影响 3.结论①因为存在表面塑流,所以压力的增加不可能无限加大真实接触面积,也不可能无限增加接触斑点数n。

      ②严格限制表面塑流当压力继续加大后,表面微观峰顶明显被压平,它减少了接触斑点表面变平的几率和产生新的接触斑点的几率,从而使真实接触面积Ac增加变得缓慢,因此收缩电阻Rc的减小也随之变得缓慢2024/9/8第2章接触电阻理论76三、三、接触压力接触压力P对真实接触面积对真实接触面积Ab的影响的影响 77四、四、气密状态气密状态 1.Tripp提出一个无量纲参数p*,2.p*和不呈线性关系:相当于表面硬度增加,它不是由于表面加工硬化造成,而是由于接触点密集,相互挤轧,相互影响,使继续变形受到阻碍 783.引进表面硬度Hs和基体硬度Hb: •>0.25,Ri的作用逐渐明显•Trip:=0.44,达到气密状态(空气无法通过间隙扩散到整个接触表面上)四、四、气密状态气密状态 4.设计固定的气密连接器: (1)接触面四周结构要考虑防止塑流; (2)可用表面材料软而基体材料硬的金属; (3)加一定的接触压力使=0.5左右; (4)接触界面的微观粗糙度随机分布; (5)用锥形结构代替平面或球形结构,有利于压破氧化膜层而造成良好的金属接触而球形结构不利于压破氧化膜层2024/9/8第2章接触电阻理论79四、四、气密状态气密状态 1.使用电镀层的目的 ◦使触点的接触电阻最小化 减小表面硬度,使用导电率大于基底金属导电率的金属◦保护触点表面以免它们被污染、氧化、腐蚀、机械磨损等 2.表面有电镀层的触点的收缩电阻◦取决于镀层的电阻率f、a-斑点的半径a与镀层厚度d的比例a/d。

      ①电镀层的电阻率f大于基底金属的电阻率,且a和d在同一数量级 ②电镀层的电阻率f小于基底金属的电阻率,且a和d在同一数量级五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 2024/9/8第2章接触电阻理论80 ①电镀层的电阻率f大于基底金属的电阻率,且a和d在同一数量级◦电流模型1)电流绝大部分在基底金属中展开,而通过电镀层的电流密度基本保持一致2)基底中a-斑点附近的压降在垂直于镀层/基底界面的方向上与镀层的压降相比可以忽略 3)镀层-基底的接触界面可认为是一个等电位面,镀层中的电流密度均匀地通过a-斑点五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 2024/9/8第2章接触电阻理论81 82◦收缩电阻的计算1)基底金属的扩散电阻为2)由于电流也通过面积为a2,厚度为d,电阻率为f的电镀层,附加的镀层电阻可表示为3)电镀触点单边的收缩电阻Rt为 ◦讨论1)当接触斑点半径a和镀层厚度d相差不大时,收缩接触电阻Rt和镀层厚度大致呈正比关系2)当镀层相当厚时,扩散电阻Rt接近f/4a,这个结果已被Nakamura 和Minowa的计算机模拟得到验证 五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 ②电镀层的电阻率f小于基底金属的电阻率,且a和d在同一数量级◦电流模型1)从a-斑点流出的电流绝大部分在电镀层中展开2)扩散电阻随着镀层厚度的增加而减少 3)当镀层厚度较厚时,扩散电阻Rt接近 五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 2024/9/8第2章接触电阻理论83 ③电镀层对接触电阻的影响通常可以通过镀层参数Pf来进行评估式中,eff是被电镀的基底金属的等效电阻率。

      当镀层厚度为0时,eff = ◦电镀触点表面的扩散电阻:五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 2024/9/8第2章接触电阻理论84 85图20 (f/)>1; 镀层参数Pf和比例d/2a之间的关系曲线 Williamson & Greenwood当d/2a1时,Pf达到极限值 86图21 (f/)<1 镀层参数Pf和 比例d/2a之间的关系曲线当d/2a1时,Pf达到极限值, ④计算◦实际上,在计算镀层接触表面的收缩电阻时,也必须考虑表面变形的影响如果两个粗糙接触表面(一个是电镀表面,一个是测量触头)的电阻率分别为1和P,并且电镀材料的有效电阻率是Pf,则电镀触点的收缩电阻为: H:接触界面中软材料的硬度 ◦镀层参数Pf和接触斑点的半径a有关,而a又受接触压力F的影响,所以Pf和接触压力有关 ◦随着接触压力F的增加,接触电阻将稍微偏离与接触压力呈F1/2的关系 五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 2024/9/8第2章接触电阻理论87 88例:一金触头在室温时与在基底铜上电镀有厚为10μm的锡镀层相接触时,接触压力为100gm,求此触点的接触电阻。

      HAu=30kgmm-2> HSn=4kgmm-2,所以上式中的H=HSn思考:与按金触头和锡平面相接触来计算收缩电阻,两者有多大差别?五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 89⑤镀层上有绝缘膜层存在时◦膜层材料的电阻率cont一般远大于金属的电阻率f;应考虑污染膜层对接触电阻的影响 ◦膜层电阻Rf可表示为 :dcont为污染膜层的厚度;而◦总的接触电阻: 五、五、电镀层对收缩电阻的影响电镀层对收缩电阻的影响 90 (1)接触电阻的实验值非常接近理论计算的接触电阻 (2)接触电阻和触头尺寸无关而只取决于接触压力 (3) 接触界面中金属-金属相接触的真实接触面积和触头的名义尺寸无关,而只取决于材料的硬度(接触表面的变形情况)图22 不同尺寸的金触头压在镀金平面上时接触电阻和接触压力之间的关系曲线镀金触头的尺寸有五种,分别为3.2mm,1.6mm,1.2mm,0.9mm和60的锥形点 91 (1)接触电阻远大于图22中的金-金触点的接触电阻值 (2)开始时接触电阻和接触压力呈反比关系证实了计算公式中的dcont0时的接触电阻 (3)接触电阻和触头尺寸无关而只取决于接触压力 图23 图22中相同的金触头压在刚被磨光的铜表面时的接触电阻测量曲线 1.基本概念:•a-斑点、收缩电阻、诺申电阻、接触硬度2.接触压力和表面硬度的关系是什么?3.接触电阻包括几部分? 4.影响收缩电阻的因素有哪些?5.单点、多斑点接触在弹性和塑性变形条件下的收缩电阻计算公式分别是什么?2024/9/8第2章接触电阻理论92作业作业 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.