
高考数学总复习 第3章 第8节 正弦定理和余弦定理应用举例课件 新人教A版.ppt
44页第八节 正弦定理和余弦定理应用举例能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、解斜三角形的常见类型及解法在三角形的六个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示.已知条件应用定理一般解法一边和两角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b与c. 在有解时只有一解两边和夹角(如a,b,C)余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由A+B+C=180°求出另一角.在有解时只有一解已知条件应用定理一般解法三边(a,b,c)余弦定理由余弦定理求出角A、B;再利用A+B+C=180°,求出角C.在有解时只有一解两边和其中一边的对角(如a,b,A)正弦定理余弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c. 可有两解,一解或无解二、用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.三、实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线 的角叫仰角,在水平线 的角叫俯角(如图①).上方 下方2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).仰角、俯角、方位角有什么区别?提示:三者的参照不同,仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的.3.方向角相对于某一正方向的水平角(如图③)(1)北偏东α°即由指北方向顺时针旋转α°到达目标方向.(2)北偏西α°即由指北方向逆时针旋转α°到达目标方向.(3)南偏西等其他方向角类似.4.坡度与坡比坡度:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i为坡比).1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC等于( )A.10° B.50° C.120° D.130°解析:由已知∠BAD=60°,∠CAD=70°,∴∠BAC=60°+70°=130°.答案:D2.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站北偏东40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )A.北偏东10° B.北偏西10° C.南偏东10° D.南偏西10°解析:灯塔A、B的相对位置如图所示,由已知得∠ACB=80°,∠CAB=∠CBA=50°,则α=60°-50°=10°.答案:B3. 如图所示,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,不能确定A、B间距离的是( )A.α,a,b B.α,β,aC.a,b,γ D.α,β,b解析:选项B中由正弦定理可求b,再由余弦定理可确定AB.选项C中可由余弦定理确定AB.选项D同B类似.答案:A4.(2011上海高考)在相距2千米的A,B两点处测量目标 C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离是________千米.5. 如图,为了测量河的宽度,在一岸边选定两点A,B望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则这条河的宽度为______m.解析:如图,在△ABC中,过C作CD⊥AB于D点,则CD为所求宽度,在△ABC中,∵∠CAB=30°,∠CBA=75°,∴∠ACB=75°,∴AC=AB=120 m.在Rt△ACD中,CD=ACsin∠CAD=120 sin 30°=60(m),因此这条河宽为60 m.答案:60 1.解决该类问题的一般步骤(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求的解是否具有实际意义,从而得出实际问题的解.2.解斜三角形应用题常有以下几种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之.(2)实际问题经抽象概括后,已知量与未知量涉及两个三角形或多个三角形,这时需按顺序逐步在几个三角形中求出问题的解.(3)实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理. 如图,南山上原有一条笔直的山路BC,现在又新架了一条索道AC,小李在山脚B处看索道,发现张角∠ABC=120°,从B处攀登400米到达D处,回头看索道,发现张角∠ADC=160°,从D处再攀登800米到达C处,问索道AC长多少?(精确到米,使用计算器计算)【自主解答】在△ABD中,BD=400米,∠ABD=120°.∵∠ADC=160°,∴∠ADB=20°,∴∠DAB=40°.∴AC≈1 319.∴索道AC长为1 319米.【活学活用】 1. 某炮兵阵地位于地面A处,两观察所分别位于地面点C和D处,已知CD=6 km,∠ACD=45°,∠ADC=75°,目标出现于地面点B处时,测得∠BCD=30°,∠BDC=15°,如图,求炮兵阵地到目标的距离.正、余弦定理在测高问题中的应用背景可测元素图形目标及解法底部可到达a、α求AB,AB= a tan α底部不可到达a、α、β求AB,①在△ACD中用正弦定理求AD;②AB=AD·sin β 某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.【特别提醒】解决该类问题时,一定要准确理解仰角和俯角的概念. 【活学活用】 2. 如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.测量角度问题也就是通过解三角形求角问题,求角问题可以转化为求该角的函数值.如果是用余弦定理求得该角的余弦,该角容易确定,如果用正弦定理求得该角的正弦,就需要讨论解的情况了.【思路点拨】本例考查正弦、余弦定理的建模应用.如图所示,注意到最快追上走私船且两船所用时间相等,若在D处相遇,则可先在△ABC中求出BC,再在△BCD中求∠BCD. 【活学活用】 3. 如图,为了解某海域海底构造,在海平面内一条直线上的A、B、C三点进行测量,已知AB=50 m,BC=120 m,于A处测得水深AD=80 m,于B处测得水深BE=200 m,于C处测得水深CF=110 m,求∠DEF的余弦值.题眼:运用正弦、余弦定理解决实际应用问题 如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°、30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.【审题】(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.【答题样板】解斜三角形应用题的一般步骤为:第一步:分析:理解题意,分清已知与未知,画出示意图;第二步:建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;第三步:求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;第四步:检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.【心得】(1)由实际出发,构建数学模型是解应用题的基本思路.如果涉及三角形问题,我们可以把它抽象为解三角形问题,进行解答,之后再还原成实际问题,即利用上述模板答题.(2)本题的易错点是,不能将已知和待求量转化到同一个三角形中,无法运用正、余弦定理求解.。
