
高等数学第六版下册复习纲要.doc
13页1 第六章:微分方程 一、微分方程的相关概念 1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶. 2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解. 通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解. 3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式: . dxfyg)()((2). 方程的解法:分离变量法 (3). 求解步骤 ①. 分离变量,将方程写成 的形式; dxfyg)()(②. 两端积分: ,得隐式通解 ; dy CxFyG)(③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式: . xyd(2).方程的解法:变量替换法 (3). 求解步骤 ①.引进新变量 ,有 及 ; xyuudxuy②.代入原方程得: ; )(d③.分离变量后求解,即解方程 ; xu④.变量还原,即再用 代替 . xy3. 一阶线性微分方程及其解法 (1).方程的形式: . )(QyPd一阶齐次线性微分方程: . 0x 2 一阶非齐次线性微分方程: . 0)(xQyPdx(2).一阶齐次线性微分方程 的解法: 分离变量法. )(通解为 ,( ).(公式) xdPCey)(R(3).一阶非齐次线性微分方程 的解法: 常数变易法. 0xQy对方程 ,设 为其通解,其中 为未知函数, )(xydxxdPeu)( )(xu从而有 , dPu)()(e代入原方程有 , )()()( )()()( xQexuexux dPxdPx 整理得 , dPQu)(e两端积分得 , Cxx)((再代入通解表达式,便得到一阶非齐次线性微分方程的通解 ,(公式) ))(()( deeyxPxdP dxeQePxdPxdP)()()(即非齐次线性方程通解=齐次线性方程通解+非齐次线性方程特解. 第七章:空间解析几何与向量代数 一、向量 ),(),,(),,( cba zyxczyxzyx1.向量 与 的数量积: ; ab babazyxbaos2. 向量 与 的向量积: . ),(azyx),(bzyx bbaazyxkji的几何意义为以 为邻边的平行四边形的面积. sinba,3. 向量 的方向余弦: ),(zyxr, 222222 cos,cos,cos zyxzyxzyx ; . 1s22iniin 3 4. 向量 与 垂直的判定: ),(azyx),(bzyx. 00baazyxb5. 向量 与 平行的判定: ),(azyx),(bzyx. kzyxkab baba0,0/ 6. 三向量共面的判定: 共面. cnmkc,7. 向量 在 上的投影: . ),(azyx),(bzyx 22Pr aabba zyxbj 二、平面 1. 过点 ,以 为法向量的平面的点法式方程: ),(0zyxP),(CBAn. 0)(0zy2. 以向量 为法向量的平面的一般式方程: . ),(n 0DCzByAx3. 点 到平面 的距离 . ,1zyxM0DCzByAx 2211cd4. 平面 与 平行的判定: :1110:22 zyBxA. 21212121// Cn5. 平面 与 垂直的判定: 0:111DzCyBxA 0: Dzyx. 21222BAn6. 平面 与 的夹角: :111zyx:2zCyx221211cosBABA三、直线 1. 过点 ,以 为方向向量的直线的点向式(对称式、标准)方程: ),(0zyxP,pnms. zyx000 4 2. 过点 ,以 为方向向量的直线的参数式方程: . ),(0zyxP),(pnms tpznytmx03. 直线的一般式方程: .方向向量为 . 02211DzCyBxA21ns4.直线方程之间的转化: i) 点向式 参数式 ii) 一般式 点向式 第一步:找点 第二步:找方向向量 21ns5. 直线 与 平行的判定: 111:pzymxL 222:pznymxL. 212121//s6. 直线 与 垂直的判定: 111:pznymxL 222:pznymxL. 01122 s7. 直线 与 的夹角: 111:pznyxL 222:pznyxL. 221211cosmp8. 直线 与平面 垂直的判定: nzmylxL000: 0:DCzByAx. nlNS/9. 直线 与平面 平行的判定: zylx000: :zyx. 0/CnBmAlSL10. 直线 与平面 的夹角: nzmylx000::Dzyx. 222si pn 5 11.点 到直线 的距离: ,其中 是直线上任意一点,),(0zyxP02211DzCyBxAsPMd. 21ns四、曲线、曲面 1. 平面上的曲线 : 绕 轴旋转一周所得的旋转曲面为 yozC0),(zyf: . S,2x2.空间曲线 : 关于 平面上的投影柱面方程为: ; 0),(zyGFoy0),(yxH在 平面上的投影曲线为 : . xoyC),(xH第九章:多元函数微分法及其应用 一、平面点集 1.内点一定在点集内,但点集内的点未必是点集的内点,还有孤立点; 2.聚点可以是点集的边界点,也可以是点集的内点,但不可以是点集的外点和点集内的孤立点; 3.开集和闭集内的所有点都是聚点. 二、二元函数的极限、连续性的相关知识点 1.二元函数 在 点的二重极限: . ),(yxf),0 Ayxfyx),(lim),(),02.二元函数 在 点的连续性: . ),0),(),0fy3.二元初等函数在其定义区域内连续. 二、二元函数的偏导数的相关知识点 1.函数 对自变量 的偏导数: 及 . ),(yxfzyx,xzy2. 函数 对自变量 的二阶偏导数: 、 、 、 ),(f,2zyx2z注:若二阶混合偏导数 与 连续,则二者相等. yxz2三、二元函数的全微分: dyzdz四、二元函数连续性、偏导数存在性以及全微分存在性三者之间的关系 6 1. 函数连续性与偏导数存在性的关系:二者没有任何的蕴涵关系. 2. 偏导数存在性与全微分存在性的关系: 全微分存在,偏导数存在;反之未必.(偏导数不存在,全微分一定不存在) 偏导数连续,全微分存在,反之未必. 3. 连续性与全微分存在性的关系: 全微分存在,函数一定连续;(函数不连续,全微分一定不存在) 函数连续,全微分未必存在. 五、二元复合函数的偏(全)导数 1.中间变量为两个,自变量为一个的复合函数的全导数: , )(,),(,),( tfztvtufz dtztdt2.中间变量为两个,自变量为两个的复合函数的偏导数: , ),(,(),(),(),( yxfzyxvuvfz vuzx,六、隐函数微分法 1.由一个方程确定的隐函数微分法: 确定隐函数 , 0),(zyxF),(yxfz直接对方程左右两端关于自变量求偏导数,即 ,即 0Fdy,解得 01xzFyx ''zx2.由方程组确定的隐函数组微分法: 确定隐函数 , ),(vuyG),(yxvu直接对方程组左右两端关于自变量求偏导数,即 ,即 0xvGudxyxFF,可以解出 . 0xvGuxFxvu, 7 七、偏导数的几何应用 1.曲线的切线方程和法平面方程 1). 以参数式方程 表示的曲线在 对应的点 的 )(,tzytx0t),(0zyxM切线方程: )()()(0'0'0' tzttx法平面方程: 0)(0''' zty2). 以一般式方程 表示的曲线在点 的切线和法平面方程: 0),(zyxGF,0yxM先用方程组 确定的隐函数组 微分法求出 ,然后得到切线的方向向量),()(gzfdxz,00,,1xxdzyn切线方程: )()(0'0'gzfy法平面方程: 0)(0'' zxx2.曲面的切平面方程和法线方程 1).以一般式方程 表示的曲面在点 的切平面和法线方程: 0),(zyF),(0zyM切平面线方程: ()('0'' FxMzyx法方程: )()()('0'0'0FzyFxx2).以特殊式方程 表示的曲面在点 的切平面和法线方程: ,fz),(0zyx令 ,有曲面在点 的切平面的法向量 0)(),(yxM)1,(),()(,, 0'0'''' yxffFNxzyx切平面线方程: ,)(0'00' zyffy法方程: . 1),(),(0'0' zxfyxf 8 3.方向导数与梯度: 1). 方向导数: ).(),(lim0 yxfyxff 2). 方向导数存在条件:可微分函数 在一点沿任意方向 的方向导数都存在,并且 ),(fzl,其中 是方向 的方向余弦. cossyzxzlf cos,l3). 梯度:函数 在点 处的梯度 ),(f ),(0zyxM( ). kzyxfjzyfifzyxgrad zx ),(),(, 0000 4). 方向导数与梯度的关系: ①.函数 在点 处增加最快的方向是其梯度 的方向,减小最快的方向是),(zf ),(0zy ),(0zfgrad的方向. 0yxgrad②. 函数 在点 沿任意方向的方向导数的最大值为 . ),(zf ),(0zyxM),(0zyxfr八、极值、条件极值 1. 函数 的极值点和驻点的关系:函数 的极值在其驻点或不可偏导点取得. ),(yxfz ),(yxfz2.求函数极值的步骤: (1).对函数 求偏导数,解方程组 ,得所有驻点 . ),(yxfz0),(''yxf ),(iyx(2).对每一个驻点 ,求出二阶偏导数的值 . ,i ),(,, ''' iyixyi xfCfBA(3).计算 ,根据 以及 的符号判定 是否是极值: ACB22 )(if若 ,则 是极小值; 0,),(iyxf若 ,则 是极大值; 2 i若 ,则 不是极小值; ,ACB),(iyxf若 ,则 是否是极值不能判定,需其他方法验证. 02i3.求函数 在附加条件 下的条件极值的方法: ),(yxfz0),(yx做拉格朗日函数 ,对自变量 求偏导,建立方程组 fFyx, 9 0),(),(),(''' ''' yxyxfFyx与附加条件联立的方程组 ,解出。
