
六年级上册数学一课一练第四单元第2课时比的基本性质 青岛版.docx
3页第2课时 比的基本性质1.填空1)比的前项和后项同时( )(0除外),比值( ),这就是比的基本性质2)0.25∶1.5化成最简整数比是( )∶( ),比值是( )3)一个长方形的长是120厘米,宽是80厘米,长和宽的最简比是( )∶( )4)2∶7=6∶( )=4÷( )=( )49(5)一个比是7∶8,如果比的前项增加14,要使比值不变,后项应增加( )6)甲车3小时行驶150千米,乙车5小时行驶250千米,甲、乙车行驶时间比是( )∶( );甲、乙车行驶路程比是( )∶( );甲、乙车行驶速度比是( )∶( )7)如果A∶B=47,那么2A∶2B=( )8)化简比要把比的前项和后项化简到( )为止2.化简下面各比1)21∶105 (2)7.2∶0.42(3)56∶49 (4)193∶76(5)60千克∶0.8吨 (6)42分∶2时3.求比值30∶18 58∶12 2∶1.2543∶1.6 0.35∶5.6 0.7∶104.用10千克盐和640千克水配成盐水,写出下面最简单的整数比。
1)盐和水的质量之比2)水和盐的质量之比3)盐和盐水的质量之比5.看图填一填1)空白部分和阴影部分的面积比是( ),比值是( )2)空白部分与大三角形的面积比是( ),比值是( )3)阴影部分与大三角形的面积比是( ),比值是( )6.甲、乙、丙三人参加百米赛跑,甲、乙的速度比是7∶6,乙、丙的速度比是4∶3,试写出甲、乙、丙三人的速度比7.如图,两个长方形重叠部分的面积相当于大长方形面积的18,相当于小长方形面积的16大长方形和小长方形面积的比是多少?第2课时 比的基本性质1.(1)乘或除以相同的数 不变(2)1 6 16(3)3 2(4)21 14 14(5)16(6)3 5 3 5 1 1(7)47 (8)互质2.(1)1∶5 (2)120∶7(3)15∶8 (4)1∶12(5)3∶40 (6)7∶203.53 54 85 56 116 0.074.(1)10∶640=1∶64(2)640∶10=64∶110∶(10+640)=1∶655.(1)3∶2 32语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫结果教师费劲,学生头疼分析完之后,学生收效甚微,没过几天便忘的一干二净造成这种事倍功半的尴尬局面的关键就是对文章读的不熟常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展2)3∶5 35(3)2∶5 25这个工作可让学生分组负责收集整理,登在小黑板上,每周一换要求学生抽空抄录并且阅读成诵其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面如此下去,除假期外,一年便可以积累40多则材料如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?6.甲∶乙=7∶6=14∶12 乙∶丙=4∶3=12∶9 甲∶乙∶丙=14∶12∶9“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师《说文解字》中有注曰:“师教人以道者之称也”师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者老师”的原意并非由“老”而形容“师”老”在旧语义中也是一种尊称,隐喻年长且学识渊博者老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法慢慢“老师”之说也不再有年龄的限制,老少皆可适用只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识7.设大长方形面积为a,小长方形面积为b18a=16ba∶b=16∶18=4∶3第 3 页。
