
2021-2022学年河北省保定市涿州利华中学高三数学理联考试卷含解析.docx
7页2021-2022学年河北省保定市涿州利华中学高三数学理联考试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 若展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A. B. C. D.参考答案:A2. 命题“所有能被2整除的整数都是偶数”的否定是 A.所有不能被2整除的整数都是偶数 B.所有能被2整除的整数都不是偶数 C.存在一个不能被2整除的整数是偶数 D.存在一个能被2整除的整数不是偶数参考答案:D3. 已知复数z=1+2i,则z? =( )A.3﹣4i B.5+4i C.﹣3 D.5参考答案:D【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:z?=(1+2i)(1﹣2i)=12+22=5.故选:D.4. 函数的定义域为 A. B. C. D. 参考答案:C5. 已知正三棱锥的底面是边长为的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为 ( )A. B. C. D. 参考答案:C略6. 已知函数, 则( )A. B. C. D.参考答案:B7. 设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若α∥β,l?α,m?β则l∥m;命题q:l∥α,m⊥l,m?β,则α⊥β.则下列命题为真命题的是( )(A) p或q (B)p且q (C)非p或q (D) p且非q参考答案:C略8. 定义域为的函数图像的两个端点为、,是图象上任意一点,其中.已知向量,若不等式恒成立,则称函数在上“阶线性近似”.若函数在上“阶线性近似”,则实数的取值范围为( ) A. B. C. D. 参考答案:D9. 过抛物线y2=2px(p>0)的焦点,斜率为的直线被抛物线截得的线段长为25,则该抛物线的准线方程为( )A.x=﹣8 B.x=﹣4 C.x=﹣2 D.x=﹣1参考答案:B【考点】抛物线的简单性质.【分析】求出直线方程,联立直线方程和抛物线方程转化为一元二次方程,根据抛物线的弦长公式进行求解即可.【解答】解:∵过抛物线y2=2px(p>0)的焦点为(,0),∴斜率为的直线方程为y=(x﹣),代入y2=2px,得[(x﹣)]2=2px,整理得8x2﹣17px+2p2=0,∴A(x1,y1),B(x2,y2),则x1+x2=,∵|AB|=x1+x2+p=+p=25,∴p=25,则p=8,则抛物线的直线方程为x=﹣=﹣4,故选:B10. 若直线x+2y+1=0与直线ax+y﹣2=0互相垂直,那么a的值等于( )A.﹣2 B.﹣ C.﹣ D.1参考答案:A【考点】直线的一般式方程与直线的垂直关系.【分析】利用相互垂直的直线斜率之间的关系即可得出.【解答】解:由于直线x+2y+1=0的斜率存在,且直线x+2y+1=0与直线ax+y﹣2=0互相垂直,则×(﹣a)=﹣1,解得a=﹣2.故选:A.二、 填空题:本大题共7小题,每小题4分,共28分11. 已知函数f(x)=,若函数y=f(x)﹣a|x|恰有3个零点,则a的取值范围是 .参考答案:a=0或a≥2【考点】函数的零点与方程根的关系;分段函数的应用.【专题】计算题;数形结合;函数的性质及应用.【分析】由y=f(x)﹣a|x|=0得f(x)=a|x|,利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象.当a=0,满足条件,当a≥2时,此时y=a|x|与f(x)有三个交点,故答案为:a=0或a≥2.【点评】本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.12. 已知,则 .参考答案:-4略13. 若则5 .参考答案:14. 数列{an}满足an+1+(-1)n an =2n-1,则{an}的前60项和为____________。
参考答案:(I)由已知得:,,,再由正弦定理可得:,所以成等比数列.(II)若,则,∴,,∴△的面积.略15. 已知直线与抛物线相交于A,B两点,O为坐标原点,则三角形OAB的面积为________.参考答案:【分析】直线方程代入抛物线方程,利用韦达定理以及弦长公式求得的值,利用点到直线的距离公式求得O到直线的距离,根据三角形的面积公式即可得结果.【详解】设,由,整理得 ,由韦达定理可知, ,点到直线的距离,则的面积,故答案为.【点睛】本题主要考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,点到直线的距离公式及三角形的面积公式,考查计算能力,属于中档题. .求曲线的弦长的方法:(1)利用弦长公式;(2)利用;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.16. 正项等比数列{an}中,,则{an}的前9项和 .参考答案:26 17. 已知长方形ABCD中,AB=4,BC=1,M为AB的中点,则在此长方形内随机取一点P,P与M的距离小于1的概率为 .参考答案:【考点】CF:几何概型.【分析】本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点P到M的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.【解答】解:根据几何概型得:取到的点到M的距离小1的概率:p====.故答案为:.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. )选修4-4:极坐标与参数方程选讲已知曲线的极坐标方程为,直线的参数方程是: (为参数).(Ⅰ)求曲线的直角坐标方程,直线的普通方程;(Ⅱ)将曲线横坐标缩短为原来的,再向左平移1个单位,得到曲线,求曲线上的点到直线距离的最小值.参考答案:略19. 如图是一个二次函数的图象.(1)写出这个二次函数的零点;(2)写出这个二次函数的解析式及时函数的值域参考答案:(1)由图可知这个二次函数的零点为(2)可设两点式,又过点,代入得, ,其在中,时递增,时递减,最大值为 又,最大值为0,时函数的值域为 20. 如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.(1)求证:AG?EF=CE?GD;(2)求证:.参考答案:考点:圆的切线的性质定理的证明;与圆有关的比例线段. 专题:证明题;压轴题.分析:(1)要证明AG?EF=CE?GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG?GF,结合(1)的结论,不难得到要证明的结论.解答: 证明:(1)连接AB,AC,∵AD为⊙M的直径,∴∠ABD=90°,∴AC为⊙O的直径,∴∠CEF=∠AGD,∵∠DFG=∠CFE,∴∠ECF=∠GDF,∵G为弧BD中点,∴∠DAG=∠GDF,∵∠ECB=∠BAG,∴∠DAG=∠ECF,∴△CEF∽△AGD,∴,∴AG?EF=CE?GD (2)由(1)知∠DAG=∠GDF,∠G=∠G,∴△DFG∽△AGD,∴DG2=AG?GF,由(1)知,∴.点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.21. (本小题满分12分)如图,圆C与x轴相切于点T(2,0),与y轴正半轴相交于两点M,N(点M在点N的下方),且| MN|=3.(Ⅰ)求圆C的方程;(Ⅱ)过点M任作一条直线与椭圆相交于两点A,B,连接AN,BN,求证:∠ANM=∠BNM. 参考答案: (Ⅰ)设圆的半径为(),依题意,圆心坐标为.∵ ∴ ,解得.2分∴ 圆的方程为.4分(Ⅱ)把代入方程,解得或,即点.6分(1)当轴时,可知=0. (2)当与轴不垂直时,可设直线的方程为.联立方程,消去得,.8分设直线交椭圆于两点,则,. ∴ 若,即10分∵, ∴ .12分22. 已知圆锥母线长为5,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,点C是弧AB的中点;(1)求三棱锥P﹣ACO的体积;(2)求异面直线MC与PO所成的角.参考答案:【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由已知得AB=8,OC=4,OC⊥AB,PO=3,由此能出三棱锥P﹣ACO的体积.(2)以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线MC与PO所成的角.【解答】解:(1)∵圆锥母线长为5,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,点C是弧AB的中点,∴AB=8,OC=4,OC⊥AB,∴PO===3,∴三棱锥P﹣ACO的体积VP﹣ACO===8.(2)以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,A(0,﹣4,0),P(0,0,3),M(0,﹣2,),C(4,0,0),O(0,0,0),=(4,2,﹣),=(0,0,﹣3),设异面直线MC与PO所成的角为θ,cosθ===,故异面直线MC与PO所成的角为arccos.。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






