好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

隐含条件添条件转化间接条件添加辅助线判定全等三角形全等三角形证明题总复习课件.ppt

29页
  • 卖家[上传人]:工****
  • 文档编号:590762971
  • 上传时间:2024-09-15
  • 文档格式:PPT
  • 文档大小:952.50KB
  • / 29 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1第第4 4讲讲 全等三角形的判定全等三角形的判定 ABC什么叫全等三角形?什么叫全等三角形?两个能两个能完全重合完全重合的三角形叫做全等三角形的三角形叫做全等三角形AˊBˊCˊ ABC全等三角形的性质?全等三角形的性质?全等三角形:对应边相等,对应角相等全等三角形:对应边相等,对应角相等 △△ABC ≌ ≌ △△A’B’C’AˊBˊCˊAB=A’B’, AC=A’C’, BC=B’C’∠∠∠∠A=∠∠∠∠A’ ,∠∠∠∠B=∠∠∠∠B’,∠∠∠∠C=∠∠∠∠C’全等三角形共有全等三角形共有6组元素组元素(3组对应边、组对应边、3组对应角组对应角)    三角形的三角形的6组元素组元素(3组对应边、3组对应角)中,中,要使两个三角形全等,到底需要使两个三角形全等,到底需要满足哪些条件?要满足哪些条件? 6选选1 or 6选选2——(一条边对应相等)(一条边对应相等)////(两条边对应相等)(两条边对应相等)6选选1::一个角一个角对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;一条边一条边对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;6选选2:: 两个角两个角对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;两条边两条边对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;一角和一边一角和一边对应相等的两个三角形对应相等的两个三角形不不一定全等;一定全等;\\\\(一个角、一条边对应相等)一个角、一条边对应相等)==①①②② 可见:可见:要使两个三角形全等,要使两个三角形全等,应至少有应至少有 组元素对应相等。

      组元素对应相等36 6选选3 3边边边边边边 (SSS)两边一角两边一角两角一边两角一边角角角角角角两边和它的夹角两边和它的夹角(SAS)两边和它一边的对角两边和它一边的对角两角和夹边两角和夹边(ASA)两角和一角的对边两角和一角的对边(AAS)×××× 两边和其中一边的对角两边和其中一边的对角对应相等的两个三角形不一定全等\=\=SSA 8三个角三个角对应相等的两个三角形不一定全等AAA 9三角形全等的三角形全等的4个个种判定公理:种判定公理: SSS(边边边)(边边边)SAS(边角边)(边角边)ASA(角边角)(角边角)AAS(角角边)(角角边) 有三边对应相有三边对应相等的两个三角形等的两个三角形全等全等. . 有两边和它们的有两边和它们的夹角对应相等的夹角对应相等的两个三角形全等两个三角形全等. . 有两角和它们的夹有两角和它们的夹边对应相等的两个边对应相等的两个三角形全等三角形全等. . 有两角和及其中有两角和及其中一个角所对的边对一个角所对的边对应相等的两个三角应相等的两个三角形全等形全等. . 证明题的分析思路:证明题的分析思路: ①①要证什么要证什么                   ②②已有什么已有什么                   ③③还还缺什么缺什么缺什么缺什么                                     ④④④④创造条件创造条件创造条件创造条件注意注意1、证明两个三角形全等,要结合题目的条件、证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法和结论,选择恰当的判定方法 2、全等三角形,是证明两条、全等三角形,是证明两条线段线段或两个或两个角角相相等的重要方法之一,证明时等的重要方法之一,证明时   ①①要观察待证的线段或角,在哪两个可能全等要观察待证的线段或角,在哪两个可能全等的三角形中。

      的三角形中 ②②有有公共边公共边的,的,公共边公共边一定是对应边,一定是对应边, 有有公共公共角角的,的,公共角公共角一定是对应角,有一定是对应角,有对顶角对顶角,,对顶角对顶角也也是对应角是对应角总之,证明过程中能用简单方法的就不要绕弯路总之,证明过程中能用简单方法的就不要绕弯路 11 例例、如图,已知、如图,已知AB=ACAB=AC,,AD=AEAD=AE,,ABAB、、DCDC相交相交于点于点M M,,ACAC、、BEBE相交于点相交于点N N,,∠∠1=∠21=∠2,试说明:,试说明:((1 1)) △△ABE ≌ △ACD ABE ≌ △ACD ((2 2))AM=ANAM=AN AN M EDCB12创造条件!创造条件! ?? 12一、挖掘一、挖掘“隐含条件隐含条件”判全等判全等1.1.如图(如图(1 1),),AB=CDAB=CD,,AC=BDAC=BD,则,则△△ABC≌△DCBABC≌△DCB吗吗? ?说说理由说说理由ADBC图(1)2.2.如图(如图(2 2),点),点D D在在ABAB上,点上,点E E在在ACAC上,上,CDCD与与BEBE相交于点相交于点O O,且,且AD=AE,AB=AC.AD=AE,AB=AC.若若∠∠B=20B=20°°,CD=5cm,CD=5cm,则,则∠∠C=C= , ,BE=BE= . .说说理由说说理由. .BCODEA图(2)3.3.如图(如图(3 3),),ACAC与与BDBD相交于相交于O,O,若若OB=ODOB=OD,,∠∠A=∠CA=∠C,若,若AB=3cmAB=3cm,则,则CD=CD= . . 说说理由说说理由. . ADBCO图(3)20°5cm3cm学习提示:学习提示:公共边,公共角,公共边,公共角,对顶角这些都是隐含的边,角相等的条件!对顶角这些都是隐含的边,角相等的条件! 4、如、如图,已知,已知AD平分平分∠∠BAC,,￿￿￿￿￿￿￿￿要使要使△△ABD≌△≌△ACD,,根据根据““SAS”需要添加条件需要添加条件￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿;;根据根据““ASA”需要添加条件需要添加条件￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿;;根据根据““AAS”需要添加条件需要添加条件￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿;;13ABCDAB=ACAB=AC∠BDA=∠CDA∠BDA=∠CDA∠B=∠C∠B=∠C友情提示:友情提示:添加条件的题目添加条件的题目. .首先要首先要找到已具备的条件找到已具备的条件, ,这些条件有些是这些条件有些是题目已知条件题目已知条件 , ,有些是图中隐含条件有些是图中隐含条件. .二二. .添条件判全等添条件判全等 14 5 5、已知:、已知:∠∠B B==∠∠DEFDEF,,BCBC==EFEF,现要,现要证明证明△△ABC≌△DEFABC≌△DEF,,若要以若要以““SAS SAS ””为依据,还缺条件为依据,还缺条件____________;;若要以若要以““ASA ASA ””为依据,还缺条件为依据,还缺条件 ______________;;若要以若要以““AAS AAS ””为依据,还缺条件为依据,还缺条件______________并说明理由。

      并说明理由. AB=DE AB=DE ∠ACB=∠F ∠ACB=∠F ∠A=∠D ∠A=∠DABCDEF 15 三、熟练转化“间接条件”判全等6如图,如图,AE=CF,,∠∠AFD=∠∠CEB,,DF=BE,,△△AFD与与△△ CEB全等吗?为什么?全等吗?为什么?ADBCFE8.“三月三,放风筝三月三,放风筝”如图(如图(6)是小东同学自己)是小东同学自己做的风筝,他根据做的风筝,他根据AB=AD,BC=DC,不用度量,,不用度量,就知道就知道∠∠ABC=∠∠ADC请用所学的知识给予说请用所学的知识给予说明解答解答7.如图(如图(5))∠∠CAE=∠∠BAD,,∠∠B=∠∠D,,AC=AE,,△△ABC与与△△ADE全等吗?全等吗?为什么?为什么?ACEBD解答解答解答解答 16 6.6.如图(如图(4 4))AE=CFAE=CF,,∠∠AFD=∠CEBAFD=∠CEB,,DF=BEDF=BE,,△△AFDAFD与与△ △ CEBCEB全等吗?为什么?全等吗?为什么?解:解:∵∵AE=CF(已知已知)ADBCFE∴∴AE--FE=CF--EF(等量减等量,差相等等量减等量,差相等)即即AF=CE在在△△AFD和和△△CEB中,中, ∴∴△△AFD≌△≌△CEB∠ ∠AFD=∠ ∠CEB(已知已知)DF=BE(已知已知)AF=CE(已证已证)(SAS) 177.如图(如图(5))∠∠CAE=∠∠BAD,,∠∠B=∠∠D,,AC=AE,,△△ABC与与△△ADE全等吗?为什么?全等吗?为什么?ACEBD解:解:∵∵ ∠∠CAE=∠ ∠BAD(已知已知)∴∴ ∠ ∠CAE+∠ ∠BAE=∠ ∠BAD+∠∠BAE (等量减等量,差相等等量减等量,差相等)即即∠∠BAC=∠ ∠DAE在在△△ABC和和△△ADE中,中, ∴∴△△ABC≌ ≌ △△ADE∠ ∠BAC=∠ ∠DAE(已证已证)AC=AE(已知已知)∠ ∠B=∠ ∠D(已知已知)(AAS) 188.“三月三,放风筝三月三,放风筝”如图(如图(6)是小东同)是小东同学自己做的风筝,他根据学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道,不用度量,就知道∠∠ABC=∠∠ADC。

      请请用所学的知识给予说明用所学的知识给予说明解解: 连接连接AC∴△∴△ADC≌△≌△ABC(SSS)∴∴ ∠∠ABC=∠∠ADC(全等三角形的对应角相等全等三角形的对应角相等)在在△△ABC和和△△ADC中,中, BC=DC(已知已知)AC=AC(公共边公共边)AB=AD(已知已知) 已知已知:如图如图AB=AE,∠∠B=∠∠E,,BC=ED AF⊥⊥CD求证:求证:点点F是是CD的中点的中点分析:要证分析:要证CF=DF可以考虑可以考虑CF 、、DF所在的两个三角形全等,为此可所在的两个三角形全等,为此可添加辅助线构建三角形全等添加辅助线构建三角形全等 ,如何,如何添加辅助线呢添加辅助线呢?已有已有AB=AE,∠∠B=∠∠E ,, BC=ED 怎样构建三角形能得到两个三角怎样构建三角形能得到两个三角形全等呢?形全等呢?连结AC,AD 添加辅助线是几何证明添加辅助线是几何证明中很重要的一种思路中很重要的一种思路 二二. .添加辅助线条件判全等添加辅助线条件判全等 证明:证明:连结AC和AD连结AC和AD∵∵在在△△ABC和ABC和△△AED中,AED中, AB=AE,AB=AE,   ∠∠B=∠∠E,, BC=EDBC=ED∴△∴△ABCABC≌△≌△AED(SAS)AED(SAS)∴∴AC=AD(全等三角形的对应边相等)AC=AD(全等三角形的对应边相等)∵∵AFAF⊥⊥CDCD∴∴ ∠∠AFC=∠∠AFD=90°,, 在在RRt△△AFC和和RRt△△AFD中中 AC=AD(已证)AC=AD(已证) AF=AF(公共边)AF=AF(公共边)∴∴RRt△△AFC≌ ≌RRt△△AFD((HLHL))∴∴CF=FD(CF=FD(全等三角形的对应边相等全等三角形的对应边相等))∴∴点点F是是CD的中点的中点 已知已知:如图如图AB=AE,∠∠B=∠∠E,,BC=ED,点,点F是是CD的中点的中点 (1)求证:求证:AF⊥⊥CD (2)连接连接BE后,还能得出什么结论?后,还能得出什么结论?(写出两个(写出两个) 22实际运用实际运用 9. 测量如图河的宽度,某人在河的对岸找到一参照物测量如图河的宽度,某人在河的对岸找到一参照物树木A,视线树木A,视线 AB与河岸垂直,然后该人沿河岸AB与河岸垂直,然后该人沿河岸步行10步(每步约步行10步(每步约0.75M)到)到O处,进行标记,处,进行标记,再向前步行再向前步行10步到步到D处,最后背对河岸向前步行处,最后背对河岸向前步行20步,此时树木步,此时树木A,标记,标记O,恰好在同一视线上,则,恰好在同一视线上,则河的宽度为河的宽度为 米。

      米15ABODC 2311. 如图如图,M是是AB的中点的中点 ,∠∠1 = 2 ,MC=MD.试说明试说明ΔACM ≌ ≌ ΔBDMABMCD()12证明证明: : ∵ M是AB的中点 (已知) ∴ MA=MB(中点定义) 在ΔACM 和ΔBDM中, MA=MB(已证) ∠1 = ∠2 (已知) MC=MD(已知) ∴ΔACM ≌ ΔBDM (SAS) 12.如图如图, M、、N分别在分别在AB和和AC上上, CM与与BN相交于点相交于点O, 若若BM = CN, ∠ ∠B=∠ ∠C .请请找出图中所有相等的线段找出图中所有相等的线段,并说明理由并说明理由. 24COBAMN 14、、已知:已知:ΔABC和和ΔBDE是等边三角形是等边三角形, 点点D在在AE的延长线上的延长线上￿￿￿￿￿￿求证:求证:BD + DC = AD 25ABCDE分析:分析:∵∵AD = AE + EDAD = AE + ED ∴ ∴只需证:只需证:BD + DC = AE + EDBD + DC = AE + ED ∵BD = ED ∵BD = ED ∴ ∴只需证只需证DC = AEDC = AE即可。

      即可 15.如图如图 已知已知AB=AC,,AD=AE,, ∠ ∠1=1=∠ ∠2,2, 试证明:试证明:△△ABD≌ ≌ △△ACEABCDE12 16.如图,在四边形如图,在四边形ABCD中,已知中,已知AB=AD,,CD=CB,,则图形中哪些角必定相等?请说明理由则图形中哪些角必定相等?请说明理由BACD 17. 如图,如图,CA=CB,,AD=BD,,M、、N分别是分别是CA、、CB的的 中点,则中点,则DM=DN,说明理由说明理由ACDBMN18. 如图,如图,AB=DEAB=DE,,AF=CDAF=CD,,EF=BCEF=BC,,∠∠A A==∠∠D D,,试说明:试说明:BF∥CE BF∥CE ABCDEF 2819.如图,AB=DC,AC=DB, 你能说明图中如图,AB=DC,AC=DB, 你能说明图中∠ ∠1=1=∠ ∠2的理由吗?2的理由吗?AABBCCDD112220.如图,AB如图,AB∥ ∥DC,ADDC,AD∥ ∥BC,说出BC,说出△△ABDD≌ ≌ △△CDB的理CDB的理由AABBCCDD 2921.21.如图如图ABAB==CDCD,,ADAD==BCBC,,O O为为ADAD中点,过O点的直线分中点,过O点的直线分别交别交ADAD、、BCBC于M、N,你能说明于M、N,你能说明∠∠1=1=∠∠2吗?2吗?1122DDAABBCCOO22如图如图ABAB==ACAC,,∠ ∠B=B=∠ ∠C,点D、E在C,点D、E在BCBC上,且上,且BDBD== CECE,,那么图中又哪些三角形全等?说明理由。

      那么图中又哪些三角形全等?说明理由AABBCCDDEE 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.