好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高分辨率遥感影像融合及其在城市规划中的应用.ppt

44页
  • 卖家[上传人]:hs****ma
  • 文档编号:605183495
  • 上传时间:2025-05-20
  • 文档格式:PPT
  • 文档大小:3.65MB
  • / 44 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,遥感影像数据融合原理与方法,数据融合基本涵义,定义,图像融合就是将同一区域的多源遥感图像按统一的坐标系统,通过空间配准和内容复合,生成一幅比单一信息源更准确、更完全、更可靠的新图像的技术方法其优点在于:,提高了影像的空间分解力和清晰度;,提高了影像的平面测图精度、分类精度及可靠性;,增强了影像的解译和动态监测能力,有效提高遥感影像数据的利用率等;,应用领域,数据融合(,data fusion),最早被应用于军事领域现在数据融合的主要应用领域有:多源影像复合、机器人和智能仪器系统、战场和无人驾驶飞机、图像分析与理解、目标检测与跟踪、自动目标识别等等相对于单源遥感影象数据,多源遥感影象数据所提供的信息具有以下特点:,冗余,性,:,表示多源遥感影像数据对环境或目标的表示、描述或解译结果相同;,互补性,:,指信息来自不同的自由度且相互独立,合作性,:,不同传感器在观测和处理信息时对其它信息有依赖关系;,信息,分层的结构特性,:,数据融合所处理的多源遥感信息可以在不同的信息层次上出现,这些信息抽象层次包括像素层、特征层和决策层,分层结构和并行处理机制还可保证系统的实时性。

      实质:,在统一地理坐标系中将对同一目标检测的多幅遥感图像数据采用一定的算法,生成一幅新的、更能有效表示该目标的图像信息目的:,将单一传感器的多波段信息或不同类别传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,改善遥感信息提取的及时性和可靠性,提高数据的使用效率数据融合原理及过程,一般来说,遥感影像的数据融合分为,预处理,和,数据融合,两步,预处理:,主要包括遥感影像的,几何纠正,、,大气订正,、,辐射校正及空间配准,几何纠正、大气订正及辐射校正的目的主要在于去处透视收缩、叠掩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;,影像空间配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异影像的空间配准是遥感影像数据融合的前提,空间配准一般可分为以下步骤:,特征选择,:,在欲配准的两幅影像上,选择如边界、线状物交叉点、区域轮廓线等明显的特征特征,匹配:,采用一定配准算法,找处两幅影像上对应的明显地物点,作为控制点空间变换:,根据控制点,建立影像间的映射关系插值,:,根据映射关系,对非参考影像进行重采样,获得同参考影像配准的影像。

      空间配准的精度一般要求在12个像元内空间配准中最关键、最困难的一步就是通过特征匹配寻找对应的明显地物点作为控制点2.数据融合,根据融合目的和融合层次智能地选择合适的融合算法,将空间配准的遥感影像数据(或提取的图像特征或模式识别的属性说明)进行有机合成,得到目标的更准确表示或估计对于各种算法所获得的融合遥感信息,有时还需要做进一步的处理,如“匹配处理”和“类型变换”等,以便得到目标的更准确表示或估计数据融合分类及方法,1,数据融合方法分类,遥感影像的数据融合方法分为三类:基于像元,(pixel),级的融合、基于特征,(,feature),级的融合、基于决策,(,decision),级的融合融合的水平依次从低到高1.1 像元级融合,像,元级融合是一种低水平的融合像,元级融合的流程为:经过预处理的遥感影像数据,数据,融合,特征提取融合,属性说明优点:,保留了尽可能多的信息,具有最高精度局限性:,效率低下:,由于,处理的传感器数据量大,所以处理时间较长,实时性差分析,数据,限制:,为了,便于像元比较,对传感器信息的配准精度要求很高,而且要求影像来源于一组同质传感器或同单位的分析,能力,差:,不能,实现对影像的有效理解和分析,纠错要求较高:,由于,底层传感器信息存在的不确定性、不完全性或不稳定性,所以对融合过程中的纠错能力有较高要求。

      抗干扰性差:,像,元级融合所包含的具体融合方法有:代数法、,IHS,变换、小波变换、主成分变换(,PCT)、K-T,变换,等1.2,特征级融合,特征级融合是一种中等水平的融合在这一级别中,先是将各遥感影像数据进行特征提取,提取的特征信息应是原始信息的充分表示量或充分统计量,然后按特征信息对多源数据进行分类、聚集和综合,产生特征矢量,而后采用一些基于特征级融合方法融合这些特征矢量,作出基于融合特征矢量的属性说明特征级融合的流程:,经过预处理的遥感影像数据特征提取特征级融合(融合)属性说明1.3,决策级融合,决策级融合是最高水平的融合融合的结果为指挥、控制、决策提供了依据在这一级别中,首先对每一数据进行属性说明,然后对其结果加以融合,得到目标或环境的融合属性说明决策级融合的优点时具有,很强的容错性,很好的开放性,处理时间短、数据要求低、分析能力强,而由于对预处理及特征提取有较高要求,所以决策级融合的,代价较高,决策级融合的流程:,经过预处理的遥感影像数据特征提取属性说明属性融合融合属性说明表1 三级融合层次的特点,融合框架,信息损失,实时性,精度,容错性,抗干扰力,工作量,融合水平,像元级,小,差,高,差,差,小,低,特征级,中,中,中,中,中,中,中,决策级,大,优,低,优,优,大,高,表2 三级融合层次下的融合方法,像元级,特征级,决策级,代数法,熵法,专家系统,IHS,变换,表决法,神经网络,小波变换,聚类分析,Bayes,估计,K-T,变换,Bayes,估计,模糊聚类法,主成分变换,神经网络法,可靠性理论,回归模型法,加权平均法,基于知识的融合法,Kalman,滤波法,Dempater-shafer,推理法,Dempater-shafer,推理法,2,数据融合方法介绍,2.1,代数法,代数法包括加权融合、单变量图像差值法、图像比值法等。

      1)加权融合法,(2)单变量图像差值法,(3)图象比值法,2.2,图像回归法(,Image Regression),图像回归法是首先假定影像的像元值是另一影像的一个线性函数,通过最小二乘法来进行回归,然后再用回归方程计算出的预测值来减去影像的原始像元值,从而获得二影像的回归残差图像经过回归处理后的遥感数据在一定程度上类似于进行了相对辐射校正,因而能减弱多时相影像中由于大气条件和太阳高度角的不同所带来的影响2.3,主成分变换(,PCT,或,K-L,变换,),PCT,是应用于遥感诸多领域的一种方法,包括高光谱数据压缩、信息提取与融合及变化监测等PCT,的本质是通过去除冗余,将其余信息转入少数几幅影像(即主成分)的方法,对大量影像进行概括和消除相关性PCT,使用相关系数阵或协方差阵来消除原始影像数据的相关性,以达到去除冗余的目的对于融合后的新图像来说各波段的信息所作出的贡献能最大限度地表现出来它将多波段的低分辨率图像进行,PCA,变换,将单波段的高分辨率图像经过灰度拉伸,使其灰度的均值与方差和,PCA,变换第一分量图像一致;然后用拉伸过的高分辨率图像代替第一分量图像,经过,PCA,逆变换还原到原始空间,生成具有高空问分辨率的多波段融合图像。

      PCT,的优点是能够分离信息,减少相关,从而突出不同的地物目标另外,它对辐射差异具有自动校正的功能,因此无须再做相对辐射校正处理2.4 Brovey,变换融合法,Brovey,变换法融合是较为简单的融合方法,它是为,RGB,影像显示进行多光谱波段颜色归一化,将高分辨率全色影像与多光谱影像红、绿、蓝波段的比重各自相乘完成融合,其计算公式为:,其中,,B_new,代表融合以后的波段数值,(i,一,1,,,2,,,3),;,Br_m,、,Bg_m,、,Bb_m,分别代表低分辨率多光谱图像中的红、绿、蓝波段数值;,B_m,表示红、绿、蓝,3,个波段中的任意一个;,B_h,代表高分辨率全色影像变换处理完成后,再反变换得到新图像2.5,乘积变换融合法,乘积变换融合是应用最基本的乘积组合算法,直接对,2,种空间分辨率的遥感数据进行融合,其运算法则为:,其中,,B,i,_new,代表融合以后的波段数值(,i=1,,,2,,,,,n,);,B,i,_m,代表多光谱图像中的任意一个波段数值;,B,i,_h,代表高分辨率遥感数据波段值乘积变换是由,Crippen,的,4,种分析技术演变而来的,,Crippen,研究表明(,Crippen,,,1989,):,将一定亮度的图像进行变换处理时,只有乘法变换可以使其色彩保持不变。

      2.6 Pansharp,融合法,(PCI Geomatica software),Pansharp,算法用于高分辨率全色影像和多光谱影像的融合,生成高分辨率彩色影像这种技术通常被称为,Pan-sharpening,Pansharp,是用于,8bit,,,16bit,或,32bit,数据,可以用于相同传感器或不同传感器之间影像的融合Pan-sharpening,自动融合算法是通过合并高分辨率的全波段影像,(PAN),增强多波段影像的空间分辨率的一种影像融合技术此种算法要求全波段影像和多波段影像同平台、同时间,(,或时间间隔很短,),获得的2.7 Gram-Schmidt,变换,Gram-Schmidt(GS),变换是线性代数和多元统计中常用的,多维线性正交变换,,在任意可内积空间,任一组相互独立的向量都可通过,GS,变换找到该向量的一组正交基设,u,1,u,2,u,n,是一组相互独立的向量,,GS,变换构造正交向量,v,1,v,2,v,n,的方式如下:,假设,v,1,=u,1,,依次计算第,i+1,个正交向量:,式中:,w,i,为已经计算的前,i,个正交向量跨越的空间,,proj,Wi,u,i+1,是,u,i+1,在,w,i,的正交投影。

      第二个向量,v,2,的计算如图 所示,其中,v,1,=u,1,2.4 K-T,变换,即,Kauth-Thomas,变换,简称,K-T,变换,又形象地称为“缨帽变换”,是线性变换的一种它能使坐标空间发生旋转,但,旋转后的坐标轴不是指向主成分的方向,而是指向另外的方向,这些方向与地面景物有密切的关系,,特别是与植物生长过程和土壤有关以此,这种变换着眼于农作物生长过程而区别于其他植被覆盖,力争抓住地面景物在多光谱空间的特征通过这种变换,既可以,实现信息压缩,,又可以,帮助解译分析农业特征,,因此有很大的实际应用意义目前对这个变换在多源遥感数据融合方面的研究应用主要集中在,MSS,与,TM,两种遥感数据的应用分析方面2.5,小波变换,小波变换是一种新兴的数学分析方法,已经受到了广泛的重视小波变换是一种全局变换,,在时间域和频率域同时具有良好的定位能力,对高频分量采用逐渐精细的时域和空域步长,可以聚焦到被处理图像的任何细节,从而被誉为“数学显微镜”小波变换常用于雷达影像,SAR,与,TM,影像的融合它具有在,提高影像空间分辨率的同时又保持色调和饱和度不变,的优越性2.6 IHS,变换,3,个波段合成的,RGB,颜色空间是一个对物体颜色属性描述系统,而,IHS,色度空间提取出物体的亮度,I,,色度,H,,饱和度,S,,它们分别对应3个波段的平均辐射强度、3个波段的数据向量和的方向及3个波段等量数据的大小。

      RGB,颜色空间和,IHS,色度空间有着精确的转换关系以,TM,和,SAR,为例,变换思路是把,TM,图像的3个波段合成的,RGB,假彩色图像变换到,IHS,色度空间,然后用,SAR,图像代替其中的,I,值,再变换到,RGB,颜色空间,形成新的影像2.7,贝叶斯(,Bayes,),估计,2.8 D-S,推理法,(,Dempster-Shafter),2.9,人工神。

      点击阅读更多内容
      相关文档
      【全国硕士研究生入学统一考试政治】2020年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2015年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2010年考研政治真题.docx 【全国硕士研究生入学统一考试政治】1996年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2001年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2016年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2000年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】1997年政治考研真题(理科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2007年考研政治真题.doc 【全国硕士研究生入学统一考试政治】1997年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2004年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2003年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2019年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2009年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2001年政治考研真题(文科)及参考答案.doc 【全国硕士研究生入学统一考试政治】2021年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2014年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2018年考研政治真题.docx 【全国硕士研究生入学统一考试政治】2008年考研政治真题.doc 【全国硕士研究生入学统一考试政治】2011年考研政治真题.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.