
具有激波和旋涡分离的可压缩湍流绕流数值研究.pdf
159页中国科学技术大学 博士学位论文 具有激波和旋涡分离的可压缩湍流绕流数值研究 姓名:陈立为 申请学位级别:博士 专业:流体力学 指导教师:陆夕云 20100401 摘 要 摘 要 具有激波和旋涡分离的可压缩湍流绕流问题是当今流体力学研究的前沿课题之 一,具有重要的工程应用背景,蕴含其中的诸多复杂流动物理亟待探索本文采用分 离涡模拟和大涡模拟方法,数值研究了三个典型流动问题,包括对称双弧翼型跨声速 绕流、圆球跨声速绕流以及超声速来流下球柱体反向喷流主要工作和研究成果如 下: (1) 采用分离涡模拟方法研究了 M∞= 0.76、 Re = 1.1107来流下绕 18% 厚度的对 称双弧翼型的可压缩流动 系统地分析了该复杂流动中的若干基本现象, 如激波 运动、 湍流边界层特性、 流场演化中相干结构的运动学和动力学过程等从理论 上提出了一个自激反馈模型,可以合理地预测激波在翼型上下表面的往复运动 根据运动激波特征,沿翼型表面可以分为三种典型的流动区域,即附着边界层 区、运动激波/湍流边界层作用区以及间歇的边界层分离区详细地分析了这三 个流动区域中的湍流统计量和相关的湍流行为由于激波/边界层的相互作用, 一些与可压缩性有关的物理量如压力-涨量关联和膨胀耗散等会显著增强。
进而 分析了流场演化中相干结构的运动学和动力学过程 在边界层分离区中, 压力波 向下游传播的速度与相干结构的运动速度基本一致瞬态 Lamb 矢量的散度和 旋度分析表明,分离剪切层和运动激波呈现多层结构,并分析了其动力学过程 脉动压力场的本征正交分解分析指出,占主导的模态与运动激波以及尾迹区中 分离的剪切层密切相关 (2) 采用大涡模拟方法研究了绕圆球的跨声速流动,着重分析流场结构、湍流特性 以及近场压缩波传播等流动现象根据剪切层的演化特征,流场可分为四个典 型区域,即初始段、线性区、再压缩区以及尾迹区详细地分析了流场的湍流特 性由于流动的可压缩性较弱,压力-涨量相关项和膨胀耗散项相对较小沿剪 切层 Reynolds 正应力的流向分量占主导地位, 在再压缩过程的作用下显著增强, 并且湍流结构发生明显改变 通过相干结构和速度梯度矩阵的研究发现, 在剪切 层的线性区内,特征不变量联合概率密度呈“泪珠状”分布,其变化反映了流动 中的耗散作用以及剪切层的发展演化过程 统计分析表明, 侧向载荷的方向遵循 均匀分布、 幅值符合 Rayleigh 分布基于涡量输运方程的逐项分析发现, 涡的拉 伸/扭曲效应占主导地位。
瞬态 Lamb 矢量散度的分布在分离剪切层中呈现双层 结构, 反映了动量交换的过程脉动压力场的本征正交分解分析指出, 近尾迹的 模态呈现出偶极子、 四极子、 六极子和八极子等结构;远尾迹中则出现了内外双 层模态结构, 如内外双偶极子、 双四极子等 (3) 采用大涡模拟方法研究了钝头体反向喷流与超声速来流的复杂相互作用问题 射流与来流的总压比是决定流动状态的一个重要参数,计算分别取 0.816 和 1.633 两种情况, 合理地模拟了实验中发现的典型状态:不稳定流态和稳定流态; 并分析了这两种流态下的射流结构演化和剪切层特征 在锥形剪切层内, 剪切应 力沿流向的演化呈现两个极大值,这与射流和来流相互作用以及再附过程紧密 -i- 摘 要 相关流向正应力在混合过程中占主导地位采用广义 Lamb 矢量散度分析了剪 切层中的相干结构, 并合理地捕捉到由激波造成的熵变特性 采用本征正交分解 方法研究了不稳定流态和稳定流态的非定常脉动速度场,发现其主导模态分别 为反对称和轴对称结构 统计分析表明侧向载荷的方向遵循均匀分布, 幅值符合 Rayleigh 分布根据两种流态主导的运动特征,分别提出了相应的反馈模型,合 理地预测了流动占优频率。
研究结果有助于对流动机理的认识和理解,对防热、 减阻和流动控制等工程问题具有指导意义 关关关键键键词词词: 可压缩湍流, 激波, 跨声速, 超声速, 分离涡模拟, 大涡模拟, 翼型, 圆球, 反 向喷流 -ii- Abstract Abstract The understanding of compressible turbulent fl ow around a body involving shock wave and vortex separation is of primary interest owing to the obvious importance in a wide range of fundamentals and applications. In the present dissertation, detached- and large-eddy simulations are employed to study three typical cases, i.e. transonic fl ow past a circular-arc aerofoil, transonic fl ow past a sphere and a jet from a blunt body opposing a supersonic fl ow. The results and conclusions are described briefl y as follows: (1) Numerical investigation of the compressible fl ow past an 18% thick circular-arc airfoil was carried out using detached-eddy simulation for a free-stream Mach number M∞= 0.76 and a Reynolds number Re = 1.1 107. Results have been validated carefully against experimental data. Various fundamental mechanisms dictating the intricate fl ow phenomena, including moving shock wave behaviours, turbulent boundary layer characteristics, kinematics of coherent structures, and dynamical processes in fl ow evolution, have been studied systematically. A feed- back model is developed to predict the self-sustained shock wave motions repeated alternately along the upper and lower surfaces of the airfoil, which is a key issue associated with the complex fl ow phenomena. Based on the moving shock char- acteristics, three typical fl ow regimes are classifi ed as attached boundary layer, moving shock/turbulent boundary layer interaction, and intermittent boundary layer separation. The turbulent statistical quantities have been analysed in detail and diff erent behaviours are found in the three fl ow regimes. Some quantities, e.g. pressure-dilatation correlation and dilatational dissipation, have exhibited that the compressibility eff ect is enhanced due to the shock/boundary layer inter- action. Further, the kinematics of coherent vortical structures and the dynamical processes in fl ow evolution are analysed. The speed of downstream propagating pressure waves in the separated boundary layer is consistent with the convection speed of the coherent vortical structures. The multi-layer structures of the sepa- rated shear layer and the moving shock wave are reasonably captured using the instantaneous Lamb vector divergence and curl, and the underlying dynamical processes are clarifi ed. In addition, the proper orthogonal decomposition analysis of the pressure fi eld illustrates that the dominated modes are associated with the moving shock waves and the separated shear layers in the trailing-edge region. (2) Large-eddy simulation of the compressible fl ow past a sphere was carried out for a free-stream Mach number M∞= 0.8 and a Reynolds number Re = 2 105. Based on the characteristics of shear layer, the turbulent wake is divided into four regions, i.e. initial stage, linear zone, recompression region and wake -iii- Abstract region. Turbulence statistic analyses indicate the pressure-dilatation correlation and dilatational dissipation terms appear small due to the weak compressibility. Along the shear layer, the streamwise normal stress is dominated and signifi cantly enhanced by the onset of the recompression, which leads to a modifi cation of the turbulence fi eld. Within the linear zone of the shear layer, the joint pro。












