好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中数学北师大版必修1-全册-知识点总结.docx

8页
  • 卖家[上传人]:壹****1
  • 文档编号:529600660
  • 上传时间:2022-10-11
  • 文档格式:DOCX
  • 文档大小:43.05KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 高中数学北师大版必修1-全册-知识点总结高中数学必修1知识点 第一章集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法 表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集. (3)集合与元素间的关系 对象与集合的关系是,或者,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等 名称 记号 意义 性质 示意图 子集 (或 A中的任一元素都属于B (1)AA (2) (3)若且,则 (4)若且,则 或 真子集 AB (或BA),且B中至少有一元素不属于A (1)(A为非空子集)(2)若且,则 集合 相等 A中的任一元素都属于B,B中的任一元素都属于A (1)AB (2)BA (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集. 【1.1.3】集合的基本运算 (8)交集、并集、补集 名称 记号 意义 性质 示意图 交集 且 (1)(2)(3)⑷ Α⊆B⟺A∩B=A 并集 或 (1)(2)(3)⑷A⊆B⟺A∪B=B 补集 ∁uA ⑴ (∁uA)∩A=∅, ⑵ ∁uA∪A=U, ⑶ ∁u∁uA=A, ⑷ ∁uA∩B=∁uA∪∁uB, ⑸ ∁u(A∪B)=(∁uA)∩(∁uB) ⑼ 集合的运算律:交换律:结合律: 分配律: 0-1律:等幂律:求补律:A∩∁uA=∅ A∪CuA=U ∁uU=∅∁u∅=U 反演律:∁u(A∩B)=(∁uA)∪(∁uB) ∁u(A∪B)=(∁uA)∩(∁uB) 第二章函数 §1函数的概念及其表示 一、映射 1.映射:设A、B是两个集合,如果按照某种对应关系f,对于集合A中的 元素,在集合B中都有 元素和它对应,这样的对应叫做 到 的映射,记作 . 2.象与原象:如果f:A→B是一个A到B的映射,那么和A中的元素a对应的 叫做象, 叫做原象。

      二、函数 1.定义:设A、B是 ,f:A→B是从A到B的一个映射,则映射f:A→B叫做A到B的 ,记作 . 2.函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数3.函数的表示法有 、 、 §2函数的定义域和值域 一、定义域:1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:① 已知函数的解析式,就是 . ② 复合函数f [g(x)]的有关定义域,就要保证内函数g(x)的 域是外函数f (x)的 域. ③实际应用问题的定义域,就是要使得 有意义的自变量的取值集合. 二、值域:1.函数y=f (x)中,与自变量x的值 的集合. 2.常见函数的值域求法,就是优先考虑 ,取决于 ,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为 法和 法)例如:① 形如y=,可采用 法;② y=,可采用 法或 法;③ y=a[f (x)]2+bf (x)+c,可采用 法;④ y=x-,可采用 法;⑤ y=x-,可采用 法;⑥ y=可采用 法等. §3函数的单调性 一、单调性 1.定义:如果函数y=f (x)对于属于定义域I内某个区间上的任意两个自变量的值x1、、x2,当x1、0,a≠1,x∈N+)叫作________指数函数;形如y=kax(k∈R,a>0,且a≠1)的函数称为________函数. 2.分数指数幂 (1)分数指数幂的定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bn=am,我们把b叫作a的次幂,记作b=;(2)正分数指数幂写成根式形式:=(a>0);(3)规定正数的负分数指数幂的意义是:=__________________(a>0,m、n∈N+,且n>1);(4)0的正分数指数幂等于____,0的负分数指数幂__________. 3.有理数指数幂的运算性质 (1)aman=________(a>0);(2)(am)n=________(a>0);(3)(ab)n=________(a>0,b>0). §3 指数函数(一) 1.指数函数的概念 一般地,________________叫做指数函数,其中x是自变量,函数的定义域是____. 2.指数函数y=ax(a>0,且a≠1)的图像和性质 a>1 00时,______;当x<0时,________ 当x>0时,________;当x<0时,________ 单调性 是R上的________ 是R上的________ §4 对数(二) 1.对数的运算性质 如果a>0,且a≠1,M>0,N>0,则:(1)loga(MN)=________________;(2)loga=________;(3)logaMn=__________(n∈R). 2.对数换底公式 logbN=(a,b>0,a,b≠1,N>0);特别地:logab·logba=____(a>0,且a≠1,b>0,且b≠1). §5 对数函数(一) 1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x是自变量,函数的定义域是________.________为常用对数函数;y=________为自然对数函数. 2.对数函数的图像与性质 定义 y=logax (a>0,且a≠1) 底数 a>1 00且a≠1)和指数函数____________________互为反函数. 第四章 函数应用 §1 函数与方程 1.1 利用函数性质判定方程解的存在 2.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴的交点的横坐标. 3.方程f(x)=0有实数根 ⇔函数y=f(x)的图像与x轴有________ ⇔函数y=f(x)有________. 4.函数零点的存在性的判定方法 如果函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)____0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解. 1.2 利用二分法求方程的近似解 1.二分法的概念 每次取区间的中点,将区间__________,再经比较,按需要留下其中一个小区间的方法称为二分法.由函数的零点与相应方程根的关系,可用二分法来_________________________________________________________________. 2.用二分法求函数f(x)零点近似值的步骤(给定精确度ε) (1)确定区间[a,b],使____________. (2)求区间(a,b)的中点,x1=__________. (3)计算f(x1). ①若f(x1)=0,则________________;②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b)). (4)继续实施上述步骤,直到区间[an,bn],函数的零点总位于区间[an,bn]上,当an和bn按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y=f(x)的近似零点,计算终止.这时函数y=f(x)的近似零点满足给定的精确度. 以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

      活动过程:  1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:  “双手抓不起,一刀劈不开,  煮饭和洗衣,都要请它来  主持人问:“谁知道这是什么?”生答:“水!”  一生戴上水的头饰上场说:“我就是同学们猜到的水听大家说,我的用处可大了,是真的吗?”  主持人:我宣布:“水”是万物之源主题班会现在开始  水说:“同学们,你们知道我有多重要吗?”齐答:“知道  甲:如果没有水,我们人类就无法生存  小熊说:我们动物可喜欢你了,没有水我们会死掉的  花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了  主持人:下面请听快板《水的用处真叫大》  竹板一敲来说话,水的用处真叫大;  洗衣服,洗碗筷,洗脸洗手又洗脚,  煮饭洗菜又沏茶,生活处处离不开它  栽小树,种庄稼,农民伯。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.