好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

第七章晶体内部结构的微观对称.ppt

29页
  • 卖家[上传人]:夏**
  • 文档编号:586740012
  • 上传时间:2024-09-05
  • 文档格式:PPT
  • 文档大小:1.28MB
  • / 29 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第七章第七章 晶体内部结构的微观对称晶体内部结构的微观对称 前面几章我们学习了晶体宏观对称理论前面几章我们学习了晶体宏观对称理论, 本章将从宏观进入微本章将从宏观进入微观观, 探讨晶体结构内部微观对称探讨晶体结构内部微观对称. 要注意宏观与微观的对比要注意宏观与微观的对比.四个方面的内容:四个方面的内容: 一、十四种空间格子--晶体结构中的周期性平移对称;一、十四种空间格子--晶体结构中的周期性平移对称; 二、内部对称要素--宏观对称要素与平移对称结合产生二、内部对称要素--宏观对称要素与平移对称结合产生 的内部结构特有的对称要素;的内部结构特有的对称要素; 三、空间群--与宏观晶体的点群对应;三、空间群--与宏观晶体的点群对应; 四、等效点系--与宏观晶体的单形对应四、等效点系--与宏观晶体的单形对应 竹林试题网: 一、十四种空间格子(十四种布拉维格子)一、十四种空间格子(十四种布拉维格子) 1.平行六面体的选择.平行六面体的选择对于每一种晶体结构而言,其结点对于每一种晶体结构而言,其结点(相当点相当点)的分的分布是客观存在的,但平行六面体的选择是人为布是客观存在的,但平行六面体的选择是人为的。

      的竹林试题网: 平行六面体的选择原则如下:平行六面体的选择原则如下:1))所所选选取取的的平平行行六六面面体体应应能能反反映映结结点点分分布整体所固有的对称性;布整体所固有的对称性;2))在在上上述述前前提提下下,,所所选选取取的的平平行行六六面面体体中棱与棱之间的直角关系力求最多;中棱与棱之间的直角关系力求最多;3)在满足以上二条件的基础上,所选取)在满足以上二条件的基础上,所选取的平行六面体的体积力求最小的平行六面体的体积力求最小 竹林试题网: 下面两个平面点阵图案中,请同学们画出其空间格子:下面两个平面点阵图案中,请同学们画出其空间格子: 4mm mm2竹林试题网: 4mm竹林试题网: mm2引出一个问题:空间格子可以有带心的格子;引出一个问题:空间格子可以有带心的格子;另外请思考:如果上面的图案对称为另外请思考:如果上面的图案对称为3m,,该怎么画?该怎么画?竹林试题网: 上述画格子的条件实质上与前面所讲的晶体上述画格子的条件实质上与前面所讲的晶体定向的原则是一致的(回忆晶体定向原则?)定向的原则是一致的(回忆晶体定向原则?),也就是说,我们在宏观,也就是说,我们在宏观晶体晶体上选出的晶轴上选出的晶轴就是内部晶体结构中空间格子三个方向的行就是内部晶体结构中空间格子三个方向的行列。

      列 2.各晶系平行六面体的形状和大小.各晶系平行六面体的形状和大小­平行六面体的平行六面体的形状形状和和大小大小用它的三根棱长用它的三根棱长(轴长)(轴长)a、、b、、c及棱间的夹角(轴角)及棱间的夹角(轴角) 、、 、、 表征这组参数(表征这组参数(a、、b、、c;; 、、 、、 ))即为即为晶胞参数晶胞参数. ­在晶体宏观形态我们可以得到各晶系的在晶体宏观形态我们可以得到各晶系的晶体晶体常数特点常数特点,是根据晶轴对称特点得出的,是根据晶轴对称特点得出的. 宏宏观上的观上的晶体常数晶体常数与与微观的晶胞参数微观的晶胞参数是对应的是对应的,但微观的晶体结构中我们可以得到晶胞参数但微观的晶体结构中我们可以得到晶胞参数的具体数值的具体数值竹林试题网: 竹林试题网: 3.平行六面体中结点的分布(即格子类型).平行六面体中结点的分布(即格子类型)1)原始格子)原始格子((P))::结点分布于平行六面体的八个角顶上结点分布于平行六面体的八个角顶上2)底心格子)底心格子((C、、A、、B))::结点分布于平行六面体的角顶结点分布于平行六面体的角顶及某一对面的中心及某一对面的中心。

      3)体心格子)体心格子((I))::结点分布于平行六面体的角顶和体中心结点分布于平行六面体的角顶和体中心4)面心格子)面心格子((F))::结点分布于平行六面体的角顶和三对面结点分布于平行六面体的角顶和三对面的中心 其中底心、体心、面心格子称带心的格其中底心、体心、面心格子称带心的格子,我们在前面画格子的例子中已经知道子,我们在前面画格子的例子中已经知道有带心格子的存在,这是因为有些晶体结有带心格子的存在,这是因为有些晶体结构在符合其对称的前提下不能画出原始格构在符合其对称的前提下不能画出原始格子,只能画出带心的格子子,只能画出带心的格子竹林试题网: 4.十四种布拉维格子.十四种布拉维格子七个晶七个晶系系---七套晶体常数七套晶体常数—七种平行六面体种形状七种平行六面体种形状每种形状有四种类型,那么就有每种形状有四种类型,那么就有7×4=28种空间格子?种空间格子?但在这但在这28种中,某些类型的格子彼此重复并可转换,还种中,某些类型的格子彼此重复并可转换,还有一些不符合某晶系的对称特点而不能在该晶系中存在,有一些不符合某晶系的对称特点而不能在该晶系中存在,因此因此,只有只有14种空间格子,也叫种空间格子,也叫14种布拉维格子。

      种布拉维格子A.Bravais于于1848年最先推导出来的)年最先推导出来的)举例说明:举例说明:1、、四方底心格子四方底心格子可转变为体积更小的四方原始格子可转变为体积更小的四方原始格子 ;;2、、在等轴晶系中,若在立方格子中的一对面的中心安置在等轴晶系中,若在立方格子中的一对面的中心安置结点,则完全不符合等轴晶系具有结点,则完全不符合等轴晶系具有4L3的对称特点,故不的对称特点,故不可能存在可能存在立方底心格子立方底心格子 例例1:四方底心格子:四方底心格子 == 四方原始格子四方原始格子 例例2:立方底心格子不符合等轴晶系对称:立方底心格子不符合等轴晶系对称思考:立方底心格子符合什么晶系的对称?思考:立方底心格子符合什么晶系的对称? 还应指出的是:还应指出的是:对于三、六方晶系的四轴定对于三、六方晶系的四轴定向也可转换成三轴定向,变为菱面体格子向也可转换成三轴定向,变为菱面体格子我们一般都用四轴定向我们一般都用四轴定向另外,六方原始格子为六方柱的顶底面加心,另外,六方原始格子为六方柱的顶底面加心,不要误认为六方底心格子不要误认为六方底心格子十四种空间格子见表十四种空间格子见表7-1。

      二、晶体内部结构的对称要素二、晶体内部结构的对称要素 研究空间格子仅仅是研究了晶体结构的平研究空间格子仅仅是研究了晶体结构的平移对称性移对称性, ,除了平移对称外除了平移对称外, ,晶体结构还有与晶体结构还有与宏观形态上一样的旋转宏观形态上一样的旋转, ,反映对称反映对称. .并且这些并且这些旋转、反映操作与平移操作复合起来就会产旋转、反映操作与平移操作复合起来就会产生内部结构特有的一些对称要素:生内部结构特有的一些对称要素:1 1.平移轴.平移轴 为一直线,图形沿此直线移动一定距离,为一直线,图形沿此直线移动一定距离,可使相等部分重合,晶体结构中任一行列都可使相等部分重合,晶体结构中任一行列都是平移轴是平移轴举例:举例: 2 2.螺旋轴.螺旋轴为一条假想直一条假想直线,当,当结构构围绕此直此直线旋旋转一定一定角度,并平行此直角度,并平行此直线移移动一定距离后,一定距离后,结构中构中的每一的每一质点都与其相同的点都与其相同的质点重合点重合举例:举例: 螺旋轴的国际符号一般写成螺旋轴的国际符号一般写成nsn为轴次为轴次,,s为小于为小于n的自然数的自然数 若沿螺旋轴方向的结点间距标记为若沿螺旋轴方向的结点间距标记为T,,则则质点平移的距离质点平移的距离t应为应为((s/n))·T,,其中其中t称为螺距。

      称为螺距 螺旋轴据其轴次和螺距可分为螺旋轴据其轴次和螺距可分为21;;31、、32;;41、、42、、43;;61、、62、、63、、64、、65共共11种它们各代表什么意思?它们各代表什么意思?举例:举例:41 意为按右旋方向旋转意为按右旋方向旋转90度后移距度后移距1/4 T;而;而43意为按右旋方向旋转意为按右旋方向旋转90度后移距度后移距3/4 T那么,那么, 41和和43是什么关系?是什么关系? 43在旋转在旋转2个个90度后移距度后移距2×3/4 T=1T+1/2T,旋,旋转转3个个90度后移度后移距距3×3/4 T=2T+1/4TT的的整数整数倍移距相当于平移轴,可以剔除,所以,倍移距相当于平移轴,可以剔除,所以, 43相当相当于旋转于旋转270度移距度移距1/4T,,也即反向旋转也即反向旋转90度移距度移距1/4T 所以,所以,41和和43是旋向相反的关系是旋向相反的关系1/41/23/403/41/21/404143 规定:规定: 41为右旋,为右旋,43则为左旋但则为左旋但43右旋时移距应为右旋时移距应为3/4T即螺旋轴的国际符号即螺旋轴的国际符号ns是以右旋为准的。

      是以右旋为准的凡凡0

      空为晶体内部结构的对称要素(操作)的组合空间群共有间群共有230种,空间群亦称之为费德洛夫群(种,空间群亦称之为费德洛夫群(Fedrov group))或圣佛利斯群(或圣佛利斯群(Schoenflies group)) ­空间群是从对称型(点群)中推导出来的,每一对称型空间群是从对称型(点群)中推导出来的,每一对称型(点群)可产生多个空间群,所以(点群)可产生多个空间群,所以32个对称型(点群)个对称型(点群)可产生可产生230种空间群种空间群­空间群与对称型(点群)的区别:空间群与对称型(点群)的区别: 有限图形(晶体形态)有限图形(晶体形态) ------无限图形(晶体结构)无限图形(晶体结构) 点操作(有一个点不动)点操作(有一个点不动)------ 空间操作空间操作 m,,n,,n,, ------ m,,n,,n,,ns,, a,,b,,d、、、、、、 空间群与对称型(点群)体现了晶体内部空间群与对称型(点群)体现了晶体内部结构的对称与晶体外形对称的统一。

      如在结构的对称与晶体外形对称的统一如在晶体外形的某一方向上有晶体外形的某一方向上有4,则在晶体内,则在晶体内部结构中相应的方向可能是部结构中相应的方向可能是4、、41、、42或或许许43,也可能有,也可能有2 空间群的国际符号包括两个组成部分,前一部分空间群的国际符号包括两个组成部分,前一部分为大写英文字母,表示格子类型(为大写英文字母,表示格子类型(P、、C((A、、B)、)、I、、F););后一部分与对称型(点群)的国后一部分与对称型(点群)的国际符号基本相同,只是其中晶体的某些宏观对称际符号基本相同,只是其中晶体的某些宏观对称要素的符号需换成相应的内部结构对称要素的符要素的符号需换成相应的内部结构对称要素的符号 例如:例如:P42/mnm 它的点群是什么?格子类型是什么?在它的点群是什么?格子类型是什么?在 什么方什么方向有什么对称要素?向有什么对称要素? 空间群的投影很复杂,见图空间群的投影很复杂,见图7-16 四、等效点系四、等效点系 等等效效点点系系是是指指::晶晶体体结结构构中中由由一一原原始始点点经经空空间间群群中中所所有有对对称称要要素素操操作作所所推推导导出出来来的的规规则则点点系系。

      等等效效点点系系与与空空间间群群的的关关系系,,相相当当于于单形与对称型(点群)的关系单形与对称型(点群)的关系 在在晶晶体体结结构构中中,,质质点点按按等等效效点点系系分分布布,,同同种种类类型型质质点点占占据据一一套套或或几几套套等等效效点点系系,,不不同同种种类型质点不能占据同一套等效点系类型质点不能占据同一套等效点系思思考考::晶晶体体结结构构中中同同种种质质点点----相相当当点点----等等效点效点 竹林试题网: 如:如:31,,42,,65,,n, d,­空间群及其国际符号:如:空间群及其国际符号:如:Pn3m, Cmcm, 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.