
聚吡咯覆膜改性电极对氢自养反硝化和产甲烷电极生物膜反应器的影响.doc
70页硕 士 学 位 论 文电极改性对氢自养反硝化和产甲烷电极生物膜反应器的影响Effects of Electrode Modification on Hydrogenotrophic Denitrification and Methanogenesis in Biofilm Electrode Reactor 作 者 姓 名: 董媛媛 学科、 专业: 环境工程 学 号: 21218048 指 导 教 师: 乔森 副教授 完 成 日 期: 2014 年 5 月 大连理工大学Dalian University of Technology大连理工大学学位论文独创性声明作者郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究工作所取得的成果尽我所知,除文中已经注明引用内容和致谢的地方外,本论文不包含其他个人或集体已经发表的研究成果,也不包含其他已申请学位或其他用途使用过的成果。
与我一同工作的同志对本研究所做的贡献均已在论文中做了明确的说明并表示了谢意若有不实之处,本人愿意承担相关法律责任学位论文题目: 作 者 签 名 : 日期: 年 月 日大连理工大学硕士学位论文摘 要电极生物膜法作为将生物膜法和电化学法联合而发展起来的处理技术,近年来越来越受到研究者们的关注它不仅具有生物膜微生物固定生长且具有较大生物量的特点,而且同样具备电化学电解法高效的氧化还原能力、以及电极与微生物之间具有较高传质速率等优点[1]随着生物电化学反应器的发展,涉及到生物电化学反应器的电极改性被广泛研究有研究报道,一些电极改性方法运用到生物电化学反应器中可以达到提高反应器性能的目的本论文探究在碳纤维毡电极上利用电化学聚合制备聚吡咯(polypyrole, PPy)的聚合效果,并利用傅里叶变换红外线(Fourier transform infrared, FTIR)及扫描电镜(SEM)对其进行表征;将聚吡咯覆膜改性后的碳纤维毡电极应用到电极生物膜反应器(Biofilm Electrode Reactor, BER)中,考察电极改性对电极生物膜反应器性能的影响,并研究电极改性对生物膜附着量、胞外聚合物成分及生物膜微生物群落的影响。
结果表明,以25 mM AQDS(蒽醌2,6-二磺酸钠)为掺杂剂的恒电压电化学聚合能够在碳纤维电极表面形成均匀稳定的聚吡咯膜,实现聚吡咯在碳纤维毡电极上的覆膜改性改性后的电极应用到电极生物膜反应器中,可使自养反硝化反应器对NO3--N的去除效率由对照反应器的67.3%增加到83.9%,处理效果提高了24.7%左右;可使产甲烷反应器COD去除率较其对照反应器最高增加约18%,甲烷产气量较其增加了约三倍对反应器内电极生物膜进行生物量测定和扫描电镜分析,可以看到R2反应器中改性电极生物膜附着量明显多于R1反应器中未改性电极生物膜的附着量,说明电极改性确实有利于生物膜的附着生物膜胞外聚合物蛋白质和多糖的测定结果说明,电极改性有助于提高胞外聚合物的含量和蛋白质及多糖的比例从而提高生物膜的活性及其强度和稳定性氢自养反硝化电极生物膜微生物16S rDNA分析中R1反应器电极生物膜菌落组成中优势菌属为Dechloromonas sp.,而R2反应器电极生物膜的优势菌为Hydrogenophaga sp.(噬氢菌属)和Thauera sp.(陶厄氏菌属),两者有明显差别,并且R2反应器比R1反应器生物膜的菌落组成更多样化。
产甲烷电极生物膜微生物古菌16S rDNA分析中两反应器电极生物膜菌落组成中优势菌属均为Methanosarcina sp.(产甲烷八叠球菌),在R1反应器中的优势菌属其次为Methanobacterium sp.(产甲烷杆菌),在R2反应器中的优势菌属其次为Methanomicrobia sp.(产甲烷微菌),两反应器微生物菌属组成有明显差异这说明电极材料的改性对电极生物膜微生物群落的组成产生了影响关键词:聚吡咯;电极改性;电极生物膜;氢自养反硝化;产甲烷- I -Effects of Electrode Modification on Hydrogenotrophic Denitrification and Methanogenesis in Biofilm Electrode ReactorAbstractBiofilm Electrode System had attracted more and more attention from researchers recently as a new method of wastewater treatment which combines biological technology and electrochemical process. It fully combined a large quantity of fixed biofilm of the former, high electrochemical oxidation reduction ability of the latter, as well as the high mass transfer efficiency in between. With the development of biological electrochemical reactor, It was widely researched of electrode modification involved Biofilm Electrode Reactor. There is a lot of research reports that, It can significantly improve the reactor performance with some methods of electrode modification.In the study, the effect of polypyrole (PPy) films electropolymerization on carbon felt (CF) electrode was investigated, and the composite was characterized by scanning electron microscope (SEM) and fourier transform infrared (FTIR) spectroscopy. The modified electrode was further applied in biofilm-electrode reactors, and its effects on the performance of the reactor, the adhesion, the component of extracellular polymer substrates (EPS) and the microbial community of the biofilm were also demonstrated. Results indicated that PPy films could form evenly and stably on CF electrode by using potentiostatic electropolymerization method doping with 25 Mm AQDS (anthraquinone-2, 6-disulfonic acid disodium salt). Besides, compared with the control reactor, the NO3--N removal rate of the modified electrode biofilm-electrode hydrogenotrophic denitrification reactor was enhanced by 24.7%. Compared with the control reactor, the COD removal rate of the modified electrode biofilm-electrode methanogenesis reactor was enhanced by 18%, CH4 accumulation was enhanced by three times.SEM and 16S rDNA was carried out to analyze the structures and communities of the biofilm on the electrode. It was visible that more biomass was attached on the modified electrode in R2, which indicated that the approach presented here could improve bacteria adhesion on the cathode. The analysis results of EPS content of the biofilm in the reactor indicated that electrode modification contributes to the increase of EPS content and the ratio of protein to polysaccharide and finally improved the activity, strength and stability of the biofilm.16S rDNA analysis of the biofilm of hydrogenotrophic denitrification indicated that Hydrogenophaga sp. and Thauera sp. were the dominant isolates in R2, which was different with R1with the dominant isolate of Dechloromonas sp. Moreover, the microbial communities of the biofilm on the modified electrode in R2 were more diversified than that of the control in R1. 16S rDNA analysis of the biofilm of methanogenesis indicated that Methanosarcina sp. was the dominant isolates in both two reactors, then was Methanobacterium sp. in R1, and 。






![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)





