
2023学年四川省绵阳东辰国际学校数学九年级第一学期期末学业水平测试模拟试题含解析.doc
18页2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每小题3分,共30分)1.二次函数y=2x2﹣4x﹣6的最小值是( )A.﹣8 B.﹣2 C.0 D.62.下列事件不属于随机事件的是( )A.打开电视正在播放新闻联播 B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上 D.若今天星期一,则明天是星期二3.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )A. B.2 C. D.4.如图,在平行四边形中,点是边上一点,且,交对角线于点,则等于( )A. B. C. D.5.若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是( )A.1 B.2 C.3 D.46.下列图形中,既是轴对称图形又是中心对称图形的共有( )A.1个 B.2个 C.3个 D.4个7.已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是( )A.16 B.-4 C.4 D.88.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )A.x>﹣2 B.x>0 C.x>1 D.x<19.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是( )A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠110.如图,在中,点D为AC边上一点,则CD的长为( )A.1 B. C.2 D.二、填空题(每小题3分,共24分)11.若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是__________.12.在Rt△ABC中,∠C=90°,如果cosB=,BC=4,那么AB的长为________.13.已知圆O的直径为4,点M到圆心O的距离为3,则点M与⊙O的位置关系是_____.14.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.15.如图,在中,,,为边上的一点,且,若的面积为,则的面积为__________.16.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),则点D的坐标是_____.17.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).18.已知:在矩形ABCD中,AB=4,AD=10,点P是BC上的一点,若∠APD=90°,则AP=_____.三、解答题(共66分)19.(10分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.20.(6分)如图,在中,AD是BC边上的高,。
1)求证:AC=BD(2)若,求AD的长21.(6分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.22.(8分)解方程:(x+2)(x-5)=1.23.(8分)在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F.求证:四边形AECF是菱形.24.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.25.(10分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围.26.(10分)如图,在中,于,,,,分别是,的中点.(1)求证:,;(2)连接,若,求的长.参考答案一、选择题(每小题3分,共30分)1、A【分析】将函数的解析式化成顶点式,再根据二次函数的图象与性质即可得.【详解】因此,二次函数的图象特点为:开口向上,当时,y随x的增大而减小;当时,y随x的增大而增大则当时,二次函数取得最小值,最小值为.故选:A.【点睛】本题考查了二次函数的图象与性质,熟记函数的图象特征与性质是解题关键.2、D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A. 打开电视正在播放新闻联播,是随机事件,不符合题意;B. 某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C. 抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D. 若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D.【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、D【解析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5, 解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5, 解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=, 或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=,∴m=,∵m<0,∴此种情形不合题意,所以m+n=﹣1+=.4、A【分析】根据平行四边形的性质和相似三角形的性质解答即可.【详解】解:∵四边形是平行四边形,,∴AD∥BC,AD=BC=3ED, ∴∠EDB=∠CBD,∠DEF=∠BCF,∴△DFE∽△BFC,∴.故选:A.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握相似三角形的判定和性质是解题的关键.5、C【分析】根据一元二次方程的解的定义,把x=1代入方程得1+2﹣m=0,然后解关于m的一次方程即可.【详解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故选:C.【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.6、B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.故选B.考点:1.中心对称图形;2.轴对称图形.7、A【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=-8x+c的顶点的横坐标为x=- = -=4,∵顶点在x轴上,∴顶点的坐标是(4,0),把(4,0)代入y=-8x+c中,得:16-32+c=0,解得:c=16,故答案为A【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.8、C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.9、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.10、C【解析】根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴ ∴ ∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】解方程得x=,即a≠1,可得a≤5,a≠1;解不等式组得0





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






