
海岸动力学复习题.doc
26页第一章 波浪理论1.1 建立简单波浪理论时,一般作了哪些假设?【答】:(1)流体是均质和不可压缩的,密度ρ为一常数;(2)流体是无粘性的理想流体;(3)自由水面的压力均匀且为常数;(4)水流运动是无旋的;(5)海底水平且不透水;(6)作用于流体上的质量力仅为重力,表面张力和柯氏力可忽略不计;(7)波浪属于平面运动,即在xz水平面内运动1.2 试写出波浪运动基本方程和定解条件,并说明其意义答】:波浪运动基本方程是Laplace方程:或写作:该方程属二元二阶偏微分方程,它有无穷多解为了求得定解,需有包括初始条件和边界条件的定解条件:初始条件:因波浪的自由波动是一种有规则的周期性运动,初始条件可不考虑边界条件:(1)在海底表面,水质点垂直速度应为0,即或写为在z=-h处,(2)在波面z=η处,应满足两个边界条件,一是动力边界条件、二是运动边界条件 A、动力边界条件 由于含有对流惯性项,所以该边界条件是非线性的B、运动边界条件,在z=η处 该边界条件也是非线性的 (3)波场上下两端面边界条件 其中c为波速,x-ct表示波浪沿x正向推进。
1.3 试写出微幅波理论的基本方程和定解条件,并说明其意义及求解方法答】:微幅波理论的基本方程为: 定解条件:z=-h处,z=0处,z=0处,求解方法:分离变量法1.4 线性波的势函数为,证明上式也可写成【证明】: 由弥散方程:以及波动角频率和波数定义: , 可得:, 即 由波速的定义: 故:将上式代入波势函数: 得: 即证1.5 由线性波势函数证明水质点的轨迹速度,并绘出相位=0~2π时的自由表面处的质点轨迹速度变化曲线以及相位=0, ,和2π时质点的轨迹速度沿水深的分布.解:(1)证明: 已知势函数方程则 其中: ,. 同理: (2) 自由表面时z=0,则,质点轨迹速度变化曲线见图.1kx-st kx-stu图.1 kx-stw相位不同时速度由水深变化关系见下,其中水深z由-h到0 当=0时,曲线见图.2当=p/2时,曲线见图.3当= p时,曲线见图.4 当=3p/2时,曲线见图.5当= 2p时,同图.2 -h 0图.2zu -h 0图.3zw-h 0 图.4zu -h 0 图.5zw1.6 试根据弥散方程,编制一已知周期函数T和水深h计算波长,波速和波数的程序,并计算T=9s,h分别为25m和15m处的波长和波速。
解:该程序用c++语言编写如下:#include "iostream.h"#include 证明】:微幅波波浪水质点运动轨迹方程为:式中为水平长半轴,b为垂直短半轴在深水的情况下,即h→无穷大,有:,,那么,水平长半轴垂直短半轴所以当水深无限深时,长半轴a与短半轴b相等,水质点运动轨迹是圆问题得证1.8 证明线性波单位水柱体内的平均势能和平均动能为【证明】: 单位水柱体内的平均势能 其中: =单位水柱体内的平均动能其中: =1.9 在水深为20m处,波高H=1m,周期T=5s,用线性波理论计算深度z=-2m,-5m,-10m处水质点轨迹直径.【解法1】:由弥散方程: , 利用题1.6可得L=38.8m k=0.162m-1 h/L=20/38.8=0.515>0.5 为深水波 故此时质点运动轨迹为一直径D为的圆 不同值下的轨迹直径可见下表:Z0-2-5-10D0.7230.4450.198【解法2】:将弥散方程 可写成 编制Excel计算表格如下,通过变化波长L的值,满足方程=0的L值即为所求波长周期T频率=2PI/T水深h波长L波数k=2PI/Lkhtanh(kh)方程=0?51.256637220100.628312.56641.0000-4.5847 200.31426.28321.0000-1.5027 250.25135.02650.9999-0.8862 300.20944.18880.9995-0.4745 350.17953.59040.9985-0.1793 380.16533.30690.9973-0.0386 38.50.16323.26400.9971-0.0172 38.910.16153.22960.99690.0000 390.16113.22210.99680.0037经试算得L=38.91m,那么,h/L=20/38.91=0.514>0.5 为深水波后续计算与解法1相同。 1.10 在水深为10m处,波高H=1m,周期T=6s,用线性波理论计算深度z=-2m、-5m、-10m处水质点轨迹直径解:将弥散方程 可写成 编制Excel计算表格如下,通过变化波长L的值,满足方程=0的L值即为所求波长周期T频率=2PI/T水深h波长L波数k=2PI/Lkhtanh(kh)方程=0?61.04719766710100.62836.28321.0000-5.0671 200.31423.14160.9963-1.9738 300.20942.09440.9701-0.8966 400.15711.57080.9172-0.3167 480.13091.30900.8640-0.0129 48.10.13061.30630.8633-0.0097 48.20.13041.30360.8626-0.0065 48.30.13011.30090.8619-0.0033 48.40.12981.29820.8613-0.0002 48.50.12961.29550.86060.0029经试算得L=48.4m,那么,h/L=10/48.4=0.207<0.5 为浅水波那么,水平长半轴,垂直短半轴b。 以z=-2m为例,分别计算:所以z=-2m时的水平向的长轴2a=1.287m;垂直向的短轴2b=1.372m 不同值下的轨迹直径可见下表:Z0-2-5-10D0.7230.4450.1981.11在某水深处的海底设置压力式波高仪,测得周期T=5s,最大压力pmax=85250N/m2(包括静水压力,但不包括大气压力),最小压力pmin=76250N/ m2,问当地水深波高值.解:分析压力公式pz =0时压力最小,即:pmin=76250N/m2 (1)=1时压力最大,即:pmax=85250 N/m2 (2) 由(1)式可得z=-7.8m 故h=-z=7.8m由弥散方程: , T=5s,h=7.8m利用题1.6可得L=36.6m kh=0.181*7.8=1.412 代入(2)式可得 H=4.0m.1.12 若波浪由深水正向传到岸边,深水波高H0=2m,周期T=10s,问传到1km长的海岸上的波浪能量(以功率计)有多少?设波浪在传播中不损失能量解:通过1km(单宽)波峰线长度的平均能量传输率,即波能流P,假设波浪在传播中不损失能量时,浅水区等于深水区,即Ps = P0,有:(Ecn)0=(Ecn)s 因深水时sinh(2kh)>>2kh,则上式左边=浅水时sinh(2kh)≈2kh,则上式右边=那么,Ps=(Ecn)s ==(Ecn)0====38310.55(N/s)线性波近底水质点速度斯托克斯波近底水质点速度1.14 如果二阶斯托克斯波η的附加项(非线性项)的振幅小于线性项的5%时,可以略去附加项而应用线性波理论,问在深水处应用线性波理论的最大允许波陡是多大?在相对水深h/L=0.2处应用线性波理论的最大允许波陡又是多大?解:(1)深水区的二阶斯托克斯波η的附加项(非线性项)为:由题意知,附加项(非线性项)的振幅小于线性项的5%,即根据振幅定义,可知余弦项应为1,那么上式变为则在深水处应用线性波理论的最大允许波陡波陡(2)在相对水深h/L=0.2处,即h=2L,kh=,并考虑振幅定义,余弦项应为1,那么,附加项(非线性项)的振幅:线性波理论的振幅:依题意,有则在相对水深h/L=0.2处应用线性波理论的最大允许波陡1.15 在水深为5m处,H=1m,T=8s,试计算斯托克斯质量输移速度沿水深的分布并计算单位长度波峰线上的质量输移流量。 解:计算波长L,利用试算法,计算得L=53.083m,因σ=2π/T=0.78。
