
福建长泰一中数学一轮复习《函数模型及其应用》教案.doc
4页福建省长泰一中高考数学一轮复习《函数模型及其应用》教案基础过关 典型例题例1. 如图所示,在矩形ABCD中,已知AB=a,BC=b(b<a),在AB,AD,CD,CB上分别截取AE,AH,CG,CF都等于x,当x为何值时,四边形EFGH的面积最大?并求出最大面积.解: 设四边形EFGH的面积为S,则S△AEH=S△CFG=x2,S△BEF=S△DGH=(a-x)(b-x),∴S=ab-2[2+(a-x)(b-x)]=-2x2+(a+b)x=-2(x-2+由图形知函数的定义域为{x|0<x≤b}.又0<b<a,∴0<b<,若≤b,即a≤3b时,则当x=时,S有最大值;若>b,即a>3b时,S(x)在(0,b]上是增函数,此时当x=b时,S有最大值为-2(b-)2+=ab-b2,综上可知,当a≤3b时,x=时,四边形面积Smax=,例2. 据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.解:(1)由图象可知:当t=4时,v=34=12,∴s=412=24.(2)当0≤t≤10时,s=t3t=t2,当10<t≤20时,s=1030+30(t-10)=30t-150;当20<t≤35时,s=1030+1030+(t-20)30-(t-20)2(t-20)=-t2+70t-550.综上可知s=(3)∵t∈[0,10]时,smax=102=150<650.t∈(10,20]时,smax=3020-150=450<650.∴当t∈(20,35]时,令-t2+70t-550=650.解得t1=30,t2=40,∵20<t≤35,∴t=30,所以沙尘暴发生30 h后将侵袭到N城.变式训练2:某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为R(x)=5x-(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台).(1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大?(3)年产量是多少时,工厂才不亏本?解:(1)当x≤5时,产品能售出x百台;当x>5时,只能售出5百台,故利润函数为L(x)=R(x)-C(x)= (2)当0≤x≤5时,L(x)=4.75x--0.5,当x=4.75时,L(x)max=10.781 25万元.当x>5时,L(x)=12-0.25x为减函数,此时L(x)<10.75(万元).∴生产475台时利润最大.(3)由得x≥4.75-=0.1(百台)或x<48(百台).∴产品年产量在10台至4 800台时,工厂不亏本.例3. 某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.解:(1)当甲的用水量不超过4吨时,即5x≤4,乙的用水量也不超过4吨,y=(5x+3x)1.8=14.4x;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x≤4且5x>4,y=41.8+3x1.8+3(5x-4)=20.4x-4.8.当乙的用水量超过4吨时,即3x>4,y=81.8+3(8x-8)=24x-9.6,所以y=(2)由于y=f(x)在各段区间上均为单调递增,当x∈[0,]时,y≤f()<26.4;当x∈(,]时,y≤f()<26.4;当x∈(,+∞)时,令24x-9.6=26.4,解得x=1.5,所以甲户用水量为5x=7.5吨,付费S1=41.8+3.53=17.70(元);乙户用水量为3x=4.5吨,付费S2=41.8+0.53=8.70(元).变式训练3:1999年10月12日“世界60亿人口日”,提出了“人类对生育的选择将决定世界未来”的主题,控制人口急剧增长的紧迫任务摆在我们的面前.(1)世界人口在过去40年内翻了一番,问每年人口平均增长率是多少?(2)我国人口在1998年底达到12.48亿,若将人口平均增长率控制在1%以内,我国人口在2008年底至多有多少亿?以下数据供计算时使用:数N1.0101.0151.0171.3102.000对数lgN0.004 30.006 50.007 30.117 30.301 0数N3.0005.00012.4813.1113.78对数lgN0.477 10.699 01.096 21.117 61.139 2解:(1)设每年人口平均增长率为x,n年前的人口数为y,则y(1+x)n=60,则当n=40时,y=30,即30(1+x)40=60,∴(1+x)40=2, 两边取对数,则40lg(1+x)=lg2,则lg(1+x)==0.007 525,∴1+x≈1.017,得x=1.7%. (2)依题意,y≤12.48(1+1%)10,得lgy≤lg12.48+10lg1.01=1.139 2,∴y≤13.78,故人口至多有13.78亿. 答 每年人口平均增长率为1.7%,2008年人口至多有13.78亿. 小结归纳解决函数应用问题应着重注意以下几点:1.阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;2.建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数模型的过程主要是抓住某些量之间的相等关系列出函数式,不要忘记考察函数的定义域;3.求解函数模型:主要是计算函数的特殊值,研究函数的单调性,求函数的值域、最大(小)值等,注意发挥函数图象的作用.4.还原评价:应用问题不是单纯的数学问题,既要符合数学学科又要符合实际背景,因于解出的结果要代入原问题进行检验、评判最后作出结论,作出回答. 4用心 爱心 专心。
