
2022届陕西省蓝田县数学高一第二学期期末联考模拟试题含解析.doc
17页2021-2022学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等比数列{an}中,若a2,a9是方程x2﹣2x﹣6=0的两根,则a4•a7的值为()A.6 B.1 C.﹣1 D.﹣62.一个几何体的三视图如图所示,则这个几何的体积为( )立方单位.A. B.C. D.3.中,,,,则的面积等于( )A. B. C.或 D.或4.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.5.的内角的对边分别为,若 ,则( )A. B. C. D.6.如果存在实数,使成立,那么实数的取值范围是( )A. B.或C.或 D.或7.某几何体的三视图如图所示,则该几何体的体积为( )A.12 B.18C.24 D.308.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①; ②; ③.其中正确命题的个数是( )A.3 B.2 C.1 D.09.若某程序框图如图所示,则该程序运行后输出的值是( )A.3 B.4 C.5 D.610.如图,在长方体中,,,,分别是,的中点则异面直线与所成角的余弦值为( )A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______12.已知函数那么的值为 .13.数列的前项和为,,且(),记,则的值是________.14.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.15.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.16.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知直线与直线的交点为P,点Q是圆上的动点.(1)求点P的坐标;(2)求直线的斜率的取值范围.18.如图,在四边形中,已知,,(1)若,且的面积为,求的面积:(2)若,求的最大值.19.等差数列中,,.(1)求通项公式;(2)若,求的最小值.20.求经过直线:与直线:的交点,且分别满足下列条件的直线方程.(Ⅰ)与直线平行;(Ⅱ)与直线垂直.21.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意利用韦达定理,等比数列的性质,求得a4•a7的值.【详解】∵等比数列{an}中,若a2,a9是方程x2﹣2x﹣6=0的两根,∴a2•a9=﹣6,则a4•a7=a2•a9=﹣6,故选:D.【点睛】本题主要考查等比数列的性质及二次方程中韦达定理的应用,考查了分析问题的能力,属于基础题.2、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.3、D【解析】先根据余弦定理求AC,再根据面积公式得结果.【详解】因为,所以或2,因此的面积等于或等于,选D.【点睛】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.4、C【解析】根据圆的标准方程的形式写.【详解】圆心为,半径为2的圆的标准方程是.故选C.【点睛】本题考查了圆的标准方程,故选C.5、B【解析】首先通过正弦定理将边化角,于是求得,于是得到答案.【详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【点睛】本题主要考查正弦定理的运用,难度不大.6、A【解析】根据,可得,再根据基本不等式取等的条件可得答案.【详解】因为,所以,即,即,又(当且仅当时等号成立)所以,所以.故选:A【点睛】本题考查了余弦函数的值域,考查了基本不等式取等的条件,属于中档题.7、C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.8、C【解析】由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;②,则平行,相交,异面都有可能,故不正确;③,则与α平行,相交都有可能,故不正确. 故选:C.【点睛】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.9、C【解析】根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到 结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.10、A【解析】连结,由,可知异面直线与所成角是,分别求出,然后利用余弦定理可求出答案.【详解】连结,因为,所以异面直线与所成角是,在中,,,,所以.故选A.【点睛】本题考查了异面直线的夹角,考查了利用余弦定理求角,考查了计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。
11、18【解析】根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为: 【点睛】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型12、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.13、3【解析】由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【点睛】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.14、【解析】作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.15、【解析】绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面 的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.16、2000【解析】由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1);(2).【解析】(1)联立方程求解即可;(2)设直线PQ的斜率为,得直线PQ的方程为,由题意,直线PQ与圆有公共点得求解即可【详解】(1)由得 ∴P的坐标为 的坐标为 .(2)由得∴圆心的坐标为,半径为 设直线PQ的斜率为,则直线PQ的方程为 由题意可知,直线PQ与圆有公共点即 或 ∴直线PQ的斜率的取值范围为.【点睛】本题考查直线交点坐标,考查直线与圆的位置关系,考查运算能力,是基础题18、 (1) ;(2)3【解析】(1)根据可解出,验证出,从而求得所求面积;(2)设,,在中利用余弦定理构造关于的方程;在中分别利用正余弦定理可得到和,代入可求得;根据三角函数最值可求得的最大值,即可得到结果.【详解】(1)由得:,即 (2)设,在中,由正弦定理得:…①由余弦定理得:…②在中,由余弦定理得:将①②代入整理得:当,即时,取最大值【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理和三角形面积公式的应用;本题中线段长度最值的求解的关键是能够利用正余弦定理构造方程,将问题转化为三角函数最值的求解问题.19、(1);(2)【解析】(1)等差数列中,由,,能求出通项公式.(2)利用等差数列前项和公式得到不等式,即可求出的最小值.【详解】解:(1)等差数列中,,.通项公式,即(2),,解得(舍去或,,的最小值为1.【点睛】本题考查等差数列的通项公式、项数的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)先求得直线与直线的交点坐标.根据平行直线的斜率关系得与平行直线的斜率,再由点斜式即可求得直线方程.(Ⅱ)根据垂直直线的斜率关系得与垂直的直线斜率,再由点斜式即可求得直线方程.【详解】解方程组得,所以直线与直线的交点是(Ⅰ)直线,可化为由题意知与直线平行则直线的斜率为 又因为过所以由点斜式方程可得 化简得所以与直线平行且过的直线方程为.(Ⅱ)直线的斜率为则由垂直时直线的斜率乘积为可知直线的斜率为由题意知该直线经过点,所以由点斜式方程可知化简可得所以与直线垂直且过的直线方程为.【点睛】本题考查了直线平行与垂直时的斜率关系,由点斜式求方程的用法,属于基础题.21、(1);(2).【解析】(1)已知求,利用即可求出;(2)。
