好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

《自动控制原理胡寿松第四版课后答案》.pdf

23页
  • 卖家[上传人]:sh****na
  • 文档编号:258399001
  • 上传时间:2022-02-23
  • 文档格式:PDF
  • 文档大小:386.01KB
  • / 23 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 13解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的 开度,流入量增加,液位开始上当流入量和流出量相等时达到平衡当流出量减小时,系 统的变化过程则相反希望液位流出量高度液位高度控制器气动阀水箱流入量浮球图一14(1) 非线性系统(2) 非线性时变系统(3) 线性定常系统(4) 线性定常系统(5) 线性时变系统(6) 线性定常系统22-1解:显然,弹簧力为 kx(t ) ,根据牛顿第二运动定律有:F (t ) kx(t) = m移项整理,得机械系统的微分方程为:d 2 x(t )dt 2m d x(t ) + kx(t ) = F (t )dt 2对上述方程中各项求拉氏变换得:ms 2 X (s) + kX (s) = F (s)所以,机械系统的传递函数为:G(s) =X (s) =F (s)1ms 2 + k2-2解一:由图易得:i1 (t )R1 = u1 (t ) u2 (t ) uc (t ) + i1 (t )R2 = u2 (t ) duc (t ) i1 (t ) = Cdt由上述方程组可得无源网络的运动方程为:C ( R + R ) du2 (t ) u (t ) = CRdu1 (t ) u (t ) 12dt+ 22+ 1dt对上述方程中各项求拉氏变换得:C (R1 + R2 )sU 2 (s) + U 2 (s) = CR2 sU1 (s) + U1 (s) 所以,无源网络的传递函数为:G(s) = U 2 (s) =U1 (s)1 + sCR21 + sC(R1 + R2 )解二(运算阻抗法或复阻抗法) :U (s) 1+ R21 + R Cs 2 = Cs = 2 U (s) R + 1 + R1 + ( R + R )Cs1121Cs22-5解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:C(s) =R(s)G1 (s)G2 (s)G3 (s)G4 (s)1 + G2 (s)G3 (s)G6 (s) + G3 (s)G4 (s)G5 (s) + G1 (s)G2 (s)G3 (s)G4 (s)G7 (s) G8 (s)2-6解: 将 G1 (s) 与 G1 (s) 组成的并联环节和 G1 (s) 与 G1 (s) 组成的并联环节简化,它们的等效传递函数和简化结构图为:G12 (s) = G1 (s) + G2 (s)G34 (s) = G3 (s) G4 (s) 将 G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:2-7解:C(s) =R(s)G12 (s)1 + G12 (s)G34 (s)=G1 (s) + G2 (s)1 + G1 (s) + G2 (s)G3 (s) G4 (s)由上图可列方程组:E (s)G1 (s) C (s)H 2 (s)G2 (s) = C (s)R(s) H1(s) C (s)G2 (s)= E (s)联列上述两个方程,消掉 E (s) ,得传递函数为:C(s) =R(s)G1 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)联列上述两个方程,消掉 C (s) ,得传递函数为:E(s) =R(s)1 + H 2 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)12 2232-8解:将反馈回路简化,其等效传递函数和简化图为:0.4G (s) = 2s + 1 =1 + 0.4 * 0.52s + 115s + 3将反馈回路简化,其等效传递函数和简化图为:1G (s) = s +0.3s + 1 =5s + 321 + 0.45s + 4.5s+ 5.9s + 3.4(s + 0.3s + 1)(5s + 3)将反馈回路简化便求得系统的闭环传递函数为:0.7 * (5s + 3) o (s) = 5s 3 +4.5s 2 +5.9s +3.4 =3.5s + 2.1i (s)1 + 0.7 * Ks(5s + 3)5s 3+ (4.5 + 3.5K )s 2+ (5.9 + 2.1K )s + 3.425s 3-3解:该二阶系统的最大超调量: p = e /1 2*100%当 p= 5% 时,可解上述方程得: = 0.69当 p= 5% 时,该二阶系统的过渡时间为:t s 3wn所以,该二阶系统的无阻尼自振角频率 wn3-4解: 3t s=30.69 * 2= 2.17由上图可得系统的传递函数:10 * (1 + Ks)C (s) =R(s)s(s + 2)1 + 10 * (1 + Ks)s(s + 2)=10 * (Ks + 1)s + 2 * (1 + 5K )s + 10所以 wn =10 ,wn = 1 + 5K 若= 0.5 时, K 0.116所以 K 0.116 时,= 0.5 系统单位阶跃响应的超调量和过渡过程时间分别为: p = e /1 2*100% = e0.5*3.14 /10.52*100% 16.3%ts =3wn=30.5 * 1.910 加入 (1 + Ks ) 相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变w212p化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。

      3-5解:由上图可得该控制系统的传递函数:C(s) =10K1R(s)二阶系统的标准形式为:C (s)R(s)s 2 + (10 + 1)s + 10Kw 2= n s 2 + 2w s + w2nn所以n = 10K12wn = 10 + 1由= e /1 2*100%t p =wn1 2 p = 9.5%t p = 0.5可得 = 0.6wn = 10K1 = 0.6wn = 7.85由和2wn = 10 + 1wn = 7.85可得:K1 = 6.16 = 0.84t s 3wn= 0.643-6解: 列出劳斯表为:因为劳斯表首列系数符号变号 2 次,所以系统不稳定 列出劳斯表为:因为劳斯表首列系数全大于零,所以系统稳定 列出劳斯表为:因为劳斯表首列系数符号变号 2 次,所以系统不稳定3-7解:系统的闭环系统传递函数:K (s +1)C (s) =R(s)=s(2s +1)(Ts +1)=1 + K (s +1)s(2s +1)(Ts +1)K (s +1)K (s +1)s(2s +1)(Ts +1) + K (s +1)2Ts3 + (T + 2)s 2 + (K +1)s + K列出劳斯表为:s32TK +1s2T + 2Ks1(K +1)(T + 2) 2KT T + 2s0K2 32 32 3T 0 ,T + 2 0 , (K + 1)(T + 2) 2KT T + 2 0 , K 0T 0K 0 , (K + 1)(T + 2) 2KT 0(K +1)(T + 2) 2KT = (T + 2) + KT + 2K 2KT= (T + 2) KT + 2K = (T + 2) K (T 2) 0K (T 2) (T + 2)3-9解:由上图可得闭环系统传递函数:C (s) =KK2 K3R(s)(1 + KK K a)s2 KK K bs KK K代入已知数据,得二阶系统特征方程:(1 + 0.1K )s2 0.1Ks K = 0列出劳斯表为:s21 + 0.1K Ks1 0.1Ks0 K可见,只要放大器10 K 0 ,系统就是稳定的。

      3-12解:系统的稳态误差为:ess= lim e(t ) = lim sE (s) = limsR(s)t s0s 0 1 + G0 (s) G0 (s) =10s(0.1s + 1)(0.5s + 1)系统的静态位置误差系数:K= lim G(s) = lim10= ps 00s 0 s(0.1s + 1)(0.5s + 1)系统的静态速度误差系数:K = lim sG(s) = lim10s= 10vs 00s 0 s(0.1s + 1)(0.5s + 1)系统的静态加速度误差系数:K = lim s 2 G(s) = lim10s 2= 0as00s0 s(0.1s + 1)(0.5s + 1)当 r (t ) = 1(t ) 时, R(s) = 1sess= lims* 1 = 0当 r (t ) = 4t 时, R(s) =s0 10s1 +s(0.1s + 1)(0.5s + 1)4s 2e= lims* 4 = 0.4sss 0 s 2当 r (t ) = t 2 时, R(s) =1 +10s(0.1s + 1)(0.5s + 1)2s 3ess= lims 01 +s* 2 = 10s 3s(0.1s + 1)(0.5s + 1)当 r(t) = 1(t) + 4t + t 2 时, R(s) = 1 + 4 + 2ss 2s 33-14解:ess = 0 + 0.4 + = 由于单位斜坡输入下系统稳态误差为常值=2,所以系统为 I 型系统设开环传递函数 G(s) =Ks(s2 + as + b)K = 0.5 b闭环传递函数(s) =G(s)=K1 + G(s)s3 + as2 + bs + KQ s = 1 j 是系统闭环极点,因此s3 + as2 + bs + K = (s + c)(s2 + 2s + 2) = s3 + (2 + c)s2 + (2c + 2)s + 2cK = 0.5bK = 2cb = 2c + 2a = 2 + cK = 2a = 3b = 4c = 1所以 G(s) =2。

      s(s2 + 3s + 4)4-1js js k k = 0k k = 00 k = 0k k k = 00(a)(b)j s js 0 0(c)(d)4-2j s p 3 = 10 p 1 = 0 p 2 = 0p1 = 0,p2 = 0,p3 = 11. 实轴上的根轨迹(, 1)(0, 0)1= 2. n m = 33 条根轨迹趋向无穷远处的渐近线相角为180(2q + 1) = 60,180a 3(q = 0,1)渐近线与实轴的交点为n m pi zii =1j =10 0 1 1 a =3. 系统的特征方程为n m= 331+G(s) = 1 +K= 0s2 (s +1)即K = s2 (s +1) = s3 s2dK = 3s2 2s = 0dss(3s + 2) = 0根s1 = 0(舍去)s2 = 0.6674. 令 s = j代入特征方程1+G(s) = 1 +K= 0s2 (s +1)s2 (s +1) + K =0( j )2 ( j +1) + K =0 2 ( j +1) + K =0K 2 j =0K 2 =0 = 0=0(舍去)与虚轴没有交点,即只有根轨迹上的起点,也即开环极点p1,2 = 0在虚轴上。

      25-1G(s) =50.25s +1G( j ) =50.25 j +1A( ) =5 (0.25 )2 +1() = arctan(0.25)输入 r(t) = 5 cos(4t 30) = 5 sin(4t + 60)=4A(4) =5(0.25 * 4)2 +1= 2.5 2(4) = arctan(0.25 * 4) = 45系统的稳态输出为c(t ) = A(4) * 5 cos4t 30 + (4)= 2.5 2 * 5 cos(4t 30 45)= 17.68 cos(4t 75) = 17.68 sin(4t +15)sin = cos(90 ) = cos( 90) = cos( + 270)5-3或者,c(t ) = A(4) * 5 sin4t + 60 + (4)= 2.5 2 * 5 sin(4t + 60 45)= 17.68 sin(4t +15)。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.