
五轴数控机床的运动精度检测剖析.docx
11页五轴数控机床的精度检测方法分析摘要:本文首先对五轴数控机床的精度检测技术做了一个简要概括,然后介绍数控机床精度检测的必要性 ,指出数控机床常见的精度要求及传统检测方法 ,并介绍先进检测方法和检测仪器、工具,以及各个检测方法的特点关键词:五轴数控机床;精度检测Precision analysis of detection method of five axis CNC machine toolsAbstract: Firstly , this paper introduces the precision detection technology of five axis NC machine tools, and then introduces the necessity of CNC machine tool accuracy detection accuracy requirements of CNC machine tools, points out the common and the traditional detection method, and introduce advanced detection method and detection instruments, tools, and the characteristics of each detection method.Key words: Five axis NC machine tool ; Precision detection1引言五轴联动数控机床目前已大量用于航空制造等高端制造领域。
由于机床复杂的机械结构及控制系统,五轴联动机床加工精度检测及优化一直是机械制造行业内研究的热点和难点, 成为影响产品加工质量及效率的关键对企业来说 ,购买数控机床是一笔相当大的投资,特别是购买大型机床实践表明,大多数大型数控机床解体发运给用户安装时 ,必须在现场调试才能符合其技术指标,因此,在新机床检收时,要进行严格的检定,使机床一开始安装就能保证达 到其枝术指标预期使用性能和生产效率投入生产的数控机床使用一段时间后 ,必须再进行精度检定通常新机床在使用半年后需再次进行检定 ,以后每年检测一次,定期检测机床误差并及时校正螺距及反向间隙等 ,可切实改善使用中的机床精度及零件加工质量 ,提高机床的生2数控机床精度检测技术研究现状常用的机床误差测量方法有直接测量法和间接测量法 ,其中间接测量法,如首先用典型工件试切或试加工,然后再对所试切的工件进行精度检测但这种方法的测量结果中包括了工 艺、刀具和材料等因素在内, 虽然可以通过试件的加工精度间接反映出机床的精度, 但不能精确地用于指导机床的研发和改进而直接测量法如用微位移传感器测量装夹在主轴上的圆 柱形基准棒或基准球,或者对装夹在工件台面上的基准量块或平尺直接进行测量 ,这种方法可以直接获得某项误差,但该方法测量效率低,测量的范围(如行程)有限。
目前世界各国对数控机床精度检测指标的定义、 测量方法及数据处理方法等都有所不同国际上有五种精度标准体系 ,分别为:德国VDI标准、日本JIS标准、国际标准ISO标准、 国标GB系列、美国机床制造商协会 NMTBA其中NAS979是美国国家航空航天局在二十 世纪七十年代提出的通用切削试件 ,"NAS试件”是通过检测加工好的圆锥台试件的 “面粗糖度、圆度、角度、尺寸”等精度指标来反映机床的动态加工精度 NAS试件已在三坐标数控机床的加工精度检测方面得到了很好的应用 ,但用NAS试件来检测五轴数控机床的加工精度还存在一些问题成都飞机工业(集团)有限责任公司于 2011年提出了用于检验五轴数控 机床的标准试件一一“ S形试件”,该试件是由一个呈“ S”形状的直纹面等厚缘条和一个矩 形基座组合而成,通过检测加工试件的“外形轮廓尺寸、厚度、表面粗糙度”等指标 ,以及试件上的3条线共99个点的坐标位置来检验五轴数控机床的加工精度 ,“S形试件”是目前五轴数控机床精度检验通用的检测试件,该试件已于2011年申请美国国家专利,“S形试件”模 型图及检测点如图1.1所示emu a FEW 一一I*弓唬一S试件模型图 测量方法需根据具体的测量仪器来制订 ,机床精度提高的需求也促进了机床精度检测工具的发展。
根据检测轨迹的不同 检测仪器可分为圆轨迹运动检测和直线运动轨迹检测由于机床的圆轨迹运动包含了较多误差信息 ,因此开发一种用于检测机床轨迹运动的仪器也是国内外学者的研究重点Heidenhaim公司研制的平面正交光栅 (GGET),既可以检测圆轨迹又可以检测直线轨迹 或不规则的异形平面运动 Wei Gao等用光电自准直仪检测主轴偏角的误差 ,用电容位移测头测出了主轴的轴向跳动误差 ,用直尺和电容位移测头结合检测出了导轨的直线度误差用于直线运动轨迹检测的仪器,目前比较常用的有双频激光干涉仪和激光跟踪仪上海交通大学 与美国光动公司合作,基于激光多普勒位移测量仪提出了一种沿体对角的机床空间几何误差 的激光矢量测量方法,通过分步测量机床工作空间的 4条体角线,并结合空间误差综合模型快速分离机床的19项误差该方法通过添加3个面上的6条对角线,可以实现分离出机床的 21项几何误差根据国际生产工程协会(CIRP)的预测,至2012年,30%-50%的新机床将配备定位误差、 直线度和各种转向误差的补偿功能随着数控机床使用数量的增加 ,在使用过程中如何对数控机床精度进行再标定及误差溯源,调整机床以排除故障或对其进行误差补偿 ,并定期地对数控机床误差进行检测和补偿的需求也会增加。
提高机床精度的关键步骤是误差检测 ,因此快速高效的误差检测方法也成为研究的重点 ,同时随着多轴数控机床的广泛应用,研究的对象也逐渐向多轴机床转移3五轴数控机床的传统精度检测方法五轴机床一般是比三轴机床多两个旋转轴首先, 要对三个直线轴进行检测;其次,是针对两个旋转轴的检测;最后,要对五轴联动性能进行检测主要包括两个:(1)三个直线轴的检测方法和三轴铳床一样,所以这里不做叙述2)两个旋转轴的检测因为旋转轴的各项精度对五轴加工精度的影响远远大于三个直线轴精度的影响, 所以对五轴机床的检测重点是两个旋转轴的精度旋转轴的精度包括两个方面: 一方面是旋转轴运动的精度, 主要要检测每个旋转轴的重 复定位精度;另一方面是两个旋转轴相互之间的关系, 主要检测两个旋转轴轴线和主轴轴线 之间空间几何关系是否正确4.1测量旋转轴的重复定位精度方法和直线轴测量方法类似:对于转台类型的旋转轴,在转台上固定一个方块,用千分 表接触方块的表面,旋转转台一定角度,再反向旋转转台同样多角度, 回到原位,观察两次图1测量转台的重复定位精度 图2测量摆头的重复定位精度4.2测定两个旋转轴和主轴之间的空间几何关系这项需要按照五轴铳床的类型分为三种情况:(1)双转台结构的五轴铳床图3为一个双转台结构的示意图, 在图中标出了两个旋转轴的轴线, 这两根轴线应该如图中那样相交于一点。
如果这两个旋转轴的轴线不相交,则要测定出两个轴线的偏心距离C轴轴线图3双转台结构示意图图4所示,分别旋转B轴+90, 如果高差为零,贝产转台的空前 心量为此高差的七丝最厚点_和-90测量两个方位下 B轴转台侧面最高点的高度差[何关系符合理想情况,如果高差不为专小 一3、C轴的偏| [转台最高点-测定方法如下:先将 C轴转台校正,使 C轴转台平行于XY平面(方法略);再如表针接触方块表面时的表读数是否一致,误差多少(如图 1);对于摆头类型的旋转轴,在 主轴上装上检测用芯棒,用千分表指针接触芯棒来检测(如图 2)图4双转台轴线偏心量测定(2)转台和单摆头结构的五轴铳床图5为单摆头结构的示意图,图中标出了 B轴的轴线和主轴的轴线,这两个轴线应该B轴的偏心量相交于一点,如果它们不相交,需要测定出它们的距离,即主轴和摆动轴测定方法如下:先在主轴上装上检测用芯棒,校正 B轴,使芯棒(主轴轴线)垂直于XY平面(方法略);再如图 6中所示,分别旋转 8轴+90°和-90° ,测量两个方位下芯棒 侧面最低点的高差如果高差为零,则摆头和主轴间的空间几何关系符合理想情况, 如果高差不为零,则主轴和 B轴的偏心量为此高差的二分之一。
图6摆头和主轴偏心量测定(3)双摆头结构的五轴铳床图7为双摆头结构示意图,图中标出了主轴轴线、 B轴轴线和C轴轴线理想情况下,主轴轴线和C轴轴线应该重合,B轴轴线和它们相交如果这三个轴线不符合这种理想情 况,需要测定出它们之间的偏心量图7双摆头结构示意图首先,测定B轴和主轴的偏心量,方法和单摆头铳床的测定方法一样然后,测定C轴和主轴的偏心量,方法如下:如图 8左边所示,在工作台上固定一个标准圆柱型,将千分表表座固定在 C轴上,表针接触圆柱形侧面,调整机床 XY轴的位置,使得C轴旋转时千分表读数不变,这样 C轴轴线就和圆柱形的中心重合了,将这个位置机床的X、Y坐标值记录下来;如图8右边所示,先转动B轴,使主轴轴线垂直于工作台 (XY 平面),再在主轴上装上检棒,将表座固定在检棒上(主轴上),表针接触圆柱形侧面,调 整机床XY轴的位置,使得检棒旋转时千分表读数不变, 这样主轴轴线就和圆柱形中心重合了,将这时机床的 X、丫坐标值同刚刚记录下来的坐标值比较,差值就是 C轴轴线和主轴轴线的X、Y偏心量图8双摆头铳床C轴和主轴偏心测定综上所述,双转台铳床的 B轴、C轴是结合为一体的双转台,要测定出 B、C轴的偏心量;转台和单摆头铳床的 B轴和主轴结合为一体,要测定出 B轴和主轴的偏心量;双摆头铳床的B轴、C轴和主轴是结合为一体的双摆头,需要测定出 B轴和主轴、C轴和主轴的偏心量。
三五轴联动性能的检测五轴联动性能的检测不需要按照五轴铳床的类型来分类五轴联动性能的检测的目的有两个: 一是检测对五轴铳床几个轴之间空间几何关系测定的准确性,二是检测机床数控系统对五轴空间几何关系的补偿功能五轴联动性能的检测不能通过直接测量来检测, 而是通过加工一些标准形状, 再测量加工出形状的误差来检测的:(一) 直线在一个平面上加工一条直线, 加工时要求刀轴连续变化, 图9中所示就是一种5轴加工直线的刀路,可以尝试用多种刀轴控制方法来加工 加工用材料可以选择较易加工的非金属材料或者有色金属,刀具用球刀加工好以后,观察直线是否弯曲,如果明显弯曲,则需要 重新检测机床各项精度,特别是重新测定两旋转轴和主轴间的偏心关系是否正确图9变刀轴加工直线刀路(二)平面用球刀精加工一个平面,将这个平面分为多段,分别用数个不同角度的固定刀轴和连续 变化的刀轴来加工,图 10中所示为这些加工刀路加工好以后,测量这个平面上不同段之 间的误差,理想情况下这个平面仍然是平的, 如果误差过大,则重新测定两旋转轴和主轴间的偏心关系是否正确图10多种刀轴控制方法加工同一个平面(三)球形用球刀精加工球形,要超过半球,刀轴垂直于球面加工,分别采用沿经线双向加工和沿 纬线螺旋加工的方法各加工一个直径相同的球形,加工刀路如图 11所示。
加工好之后,测量两个球形的直径,和标准值比较误差 如果有条件,还可以测量两个球形的圆度和标准球 形的误差值图11五轴加工球形的两种刀路以上就是用加工标准形状的方法来检测五轴铳床的五轴联动性能的一种基本方法 总结如下:先加工一条直线,初步判断五轴空间几。












