好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

初二数学人教版因式分解_讲义.doc

19页
  • 卖家[上传人]:汽***
  • 文档编号:537473026
  • 上传时间:2023-05-04
  • 文档格式:DOC
  • 文档大小:772.46KB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 初二数学因式分解教案授课教师授课对象授课时间授课题目因式分解课 型使用教具教学目标 因式分解是初中代数中一种重要的恒等变形,是处理数学家问题重要的手段和工具,有关的题目在中考和数学竞赛中比较常见对于特殊的因式分解,除了考虑提公因式法、公式法、分组分解法、十字相乘法等基本方法外,还应根据多项式的具体结构特征,灵活选用一些特殊的方法,这样不仅可使问题化难为易,化繁为简,使复杂问题迎刃而解,而且有助于培养同学们的探索求新的习惯,提高同学们的数学思维能力现将因式分解中几种比较常用的方法与技巧列举如下,供同学们参考教学重点和难点 通过具体的题目来复习相关内容参考教材八年级数学教参因式分解的常用方法第一部分:方法介绍  多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1 ) (a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2 ) (a±b)2 = a2±2ab+b2 ——— a2±2ab+b2=(a±b)2; (3 ) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4 ) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);例.已知是的三边,且,则的形状是( )A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形解: 三、分组分解法.(一)分组后能直接提公因式例1、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

      解:原式= = 每组之间还有公因式! = 例2、分解因式:解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组 第二、三项为一组解:原式= 原式= = = = =练习:分解因式1、 2、(二)分组后能直接运用公式例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组 解:原式= = =例4、分解因式: 解:原式= = =练习:分解因式3、 4、综合练习:(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11)(12)四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——进行分解。

      特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和思考:十字相乘有什么基本规律?例.已知0<≤5,且为整数,若能用十字相乘法分解因式,求符合条件的.解析:凡是能十字相乘的二次三项 式ax2+bx+c,都要求 >0而且是一个完全平方数于是为完全平方数,例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5 由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5 1 2解:= 1 3 = 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数例6、分解因式:解:原式= 1 -1 = 1 -6 (-1)+(-6)= -7练习5、分解因式(1) (2) (3)练习6、分解因式(1) (2) (3)(二)二次项系数不为1的二次三项式——条件:(1) (2) (3) 分解结果:=例7、分解因式:分析: 1 -2 3 -5 (-6)+(-5)= -11解:=练习7、分解因式:(1) (2) (3) (4)(三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。

      1 8b 1 -16b 8b+(-16b)= -8b 解:= =练习8、分解因式(1)(2)(3)(四)二次项系数不为1的齐次多项式例9、 例10、 1 -2y 把看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式= 解:原式=练习9、分解因式:(1) (2)综合练习10、(1) (2)(3) (4) (5) (6)(7) (8) (9) (10)思考:分解因式:五、换元法。

      例13、分解因式(1) (2)解:(1)设2005=,则原式= = =(2)型如的多项式,分解因式时可以把四个因式两两分组相乘 原式=设,则∴原式== ==练习13、分解因式(1)(2) (3)例14、分解因式(1)观察:此多项式的特点——是关于的降幂排列,每一项的次数依次少1,并且系数成“轴对称”这种多项式属于“等距离多项式”方法:提中间项的字母和它的次数,保留系数,然后再用换元法解:原式==设,则∴原式== == == =(2)解:原式== 设,则 ∴原式== ==练习14、(1) (2)六、添项、拆项、配方法例15、分解因式(1) 解法1——拆项 解法2——添项原式= 原式== = = = = == =(2)解:原式====练习15、分解因式(1) (2)(3) (4)(5) (6)七、待定系数法。

      例16、分解因式分析:原式的前3项可以分为,则原多项式必定可分为解:设=∵=∴=对比左右两边相同项的系数可得,解得∴原式=例17、(1)当为何值时,多项式能分解因式,并分解此多项式 (2)如果有两个因式为和,求的值1)分析:前两项可以分解为,故此多项式分解的形式必为解:设= 则=比较对应的系数可得:,解得:或∴当时,原多项式可以分解;当时,原式=;当时,原式=(2)分析:是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如的一次二项式解:设= 则=∴ 解得,∴=21练习17、(1) (2)(3) 已知:能分解成两个一次因式之积,求常数并且分解因式4) 为何值时,能分解成两个一次因式的乘积,并分解此多项式第二部分:习题大全经典一:一、填空题1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式2分解因式: m3-4m= .3.分解因式: x2-4y2= __ _____.4、分解因式:=___________ ______5.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 . 6、若,则=________。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.