
信号与系统课件郑君里版§3.10抽样信号的傅里叶变换.ppt
12页北京邮电大学电子工程学院2002.3退出 开始§3.10 抽样信号的傅里叶变换•抽抽样样•理想抽理想抽样样•矩形脉冲抽矩形脉冲抽样样 由由fs( (t) )能否恢复能否恢复f( (t) )X第第2页页一.抽样从从连续连续信号到离散信号的信号到离散信号的桥桥梁梁,也是,也是对对信号信号进进行行数字数字处处理理的第一个的第一个环节环节抽抽样样原理原理图图::fs(t)f (n)g(n)D/ Ag(t)p(t)周期周期f (t)A/ D量化量化编码编码数字数字滤滤波器波器信号信号 fs(t) ↔ Fs( (ω) )与与F( (ω) )的关系的关系需解决的需解决的问题问题 : ∑F( (ω − nω ) )X第第3页页连续信号f(t)抽样信号fS(t)⊗抽样脉冲δT( (t) )∞n= =−∞sF( (ω) )∗ ∗δT( (ω) )= =Fs( (ω) )= = F[ [f( (t) )δT( (t) )] ]= =1TS12π∞ ∞−∞ −∞∞−∞(−ωm < <ω < <ωm)f( (t) )↔ F( (ω) )p( (t) )↔ P( (ω) ) ,fs( (t) )↔ Fs( (ω) )X第第4页页tf(t)otp(t)otTSfS(t)o TSoωF(ω)ω(ωS)ω1−ωmoωmP(ω)oωmωS−ωS相乘卷积(1)ELLLLLL−ωSLωSF S(ω)1TSL2.冲激抽样信号的频谱( (1) ) n = = 0时时,Fs( (ω) )= = F( (ω) ),包包oωm第第5页页ωs −ωmωs −ωm > >ωm3.几点认识1Ts含原信号的全部信息含原信号的全部信息,幅度幅度差差Ts倍倍.( (2) ) Fs( (ω) )以以ωs为为周期的周期的连续谱连续谱 ,有有新的新的频频率成份率成份 ,即即F( (ω) )的周期的周期ωL−ωSF S(ω)1TSLωS性延拓.(3)假设接一个理想低通滤波器, 其增益为为Ts 截止截止频频率率ωm < <ωc < <ωs −ωm滤滤除高除高频频成份,即可重成份,即可重现现原信号。
原信号XX第第6页页三.矩形脉冲抽样1.抽.抽样样信号信号连续连续信号信号:p( (t) )抽抽样样脉冲序列脉冲序列:fs( (t) )= = f( (t) )⋅ ⋅ p( (t) )抽抽样样信号信号:tf(t)otop(t)TStoTSfS(t)连续信号f(t)抽样信号fS(t)⊗抽样脉冲p( (t) )f( (t) )第第7页页关系连续连续信号信号: f( (t) );抽抽样样脉冲序列脉冲序列 ::p( (t) )抽抽样样信号信号: fs( (t) )f( (t) )↔ F( (ω) )p( (t) )↔ P( (ω) ) ,fs( (t) )↔ Fs( (ω) )• τ 越小越小,愈能反映离散愈能反映离散时时刻之刻之值值 , .从信号从信号传输传输角度看角度看 ,更更关心关心fs( (t) )中有无中有无 f( (t) )的全部信息的全部信息,必必须须考考虑虑 fs( (t) )的的频谱频谱结结构构.Xfs( (t) )= = f( (t) )⋅ ⋅ p( (t) )(−ωm < <ω < <ωm)限限带带信号信号F( (ω) )∗ ∗ P( (ω) )Fs( (ω) )= =12πo TX第第8页页tf(t)otτp(t)EtSfS(t)o TSωF(ω)ω2πωτ−ωSo ωSF S(ω)EτTS1−ωmoωmP(ω)EτωSoωmωS−ωS相乘卷积频谱结构τ∴∴ P( (ω) )= = 2π ∑ nωSτ δ( (ω − nωs) ) nωSτ ∑ − = = n ∞Sa 2 F( (ω) )∗ ∗δ( (ω −nωs) ) nω Sτ ∑ − = = n ∞Sa 2 F( (ω −nωs) )X第第9页页频谱结构的数学表示F( (ω) )∗ ∗P( (ω) )Fs( (ω) )= = F[ [f( (t) )⋅ ⋅ p( (t) )] ]= =12π∞n sn= =−∞τ nωSτ Ts 2 ∞∞= =τTs∴∴ Fs( (ω) )= = τTs ∞n= =−∞TsSa 2= =τ 1τ nωSτ∑ − = = n ∞Sa 2, ωS = == = F( (ω −nωs) ) π ⋅ ⋅X第第10页页2.举例说明抽样信号与原信号频谱的关系Ts τ2π π2πτ= = 2ωs即二次即二次谐谐波波为为 0n = = 0n = =1Fs( (ω) )F( (ω −ωs) )F( (ω −ωs) )= == =1πSa 2 12n = = 1n = = −1 Fs( (ω) )F( (ω + +ωs) )F( (ω + +ωs) )= == =1π1 22 πn = = −1∞ ,ωsτ = =π ∴∴TsQFs( (ω) )= =设设:Ts 2F( (ω) )12Fs( (0) )= =n= =0 F( (ω m 3ω s) )= = −⋅⋅−X第第11页页= = 0n = = ± ±2n = = ± ±2 , Fs( (ω) )n = = ± ±3Fs( (ω) )13πF( (ω m 3ω s) )1 2 2 3π = =n = = ± ±31213π1πF(ω)1π13πF(ω −3ωs)LF(ω −ωs)−+ +F(ω + +ωs)+ +F(ω + + 3ωs)+ +Fs(ω) = =L−第第12页页ω S不不变变Ts不不变变,,2πTsQω S = == =τ ↓,离原点越离原点越远远.理想抽理想抽样样τ → 0,矩形脉冲矩形脉冲 → δ( (t) )X2πτ脉冲脉冲宽宽度度τ ↓,第一个零点第一个零点= =ωSTSτ2π TSTS τ3.讨论τ 的影响。
