好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

冀教版九年级数学下册精品教学304第1课时抛物线形问题.ppt

27页
  • 卖家[上传人]:bin****86
  • 文档编号:57773480
  • 上传时间:2018-10-24
  • 文档格式:PPT
  • 文档大小:1.20MB
  • / 27 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 30.4 二次函数的应用,优 翼 课 件,,,导入新课,,,讲授新课,,,,当堂练习,,,,课堂小结,,,,,,,,学练优九年级数学下(JJ)教学课件,第1课时 抛物线形问题,第三十章 二次函数,1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题.(重点) 2.利用二次函数解决拱桥及运动中的有关问题.(重、难点),导入新课,问题引入,如图,一座拱桥的纵截面是抛物线的一部分,拱桥的跨度是4.9米,水面宽是4米时,拱顶离水面2米.现在想了解水面宽度变化时,拱顶离水面的高度怎样变化.你能想出办法来吗?,讲授新课,这是什么样的函数呢?,你能想出办法来吗?,合作探究,怎样建立直角坐标系比较简单呢?,以拱顶为原点,抛物线的对称轴为y轴,建立直角坐标系,如图.,从图看出,什么形式的二次函数,它的图象是这条抛物线呢?,由于顶点坐标系是(0.0),因此这个二次函数的形式为,如何确定a是多少?,已知水面宽4米时,拱顶离水面高2米,因此点A(2,-2)在抛物线上,由此得出,因此, ,其中 |x|是水面宽度的一半,y是拱顶离水面高度的相反数,这样我们就可以了解到水面宽度变化时,拱顶离水面高度怎样变化.,解得,由于拱桥的跨度为4.9米,因此自变量x的取值范围是:,水面宽3m时 从而 因此拱顶离水面高1.125m,现在你能求出水面宽3米时,拱顶离水面高多少米吗?,知识要点,建立二次函数模型解决实际问题的基本步骤是什么?,实际问题,,建立二次函数模型,,利用二次函数的图象和性质求解,,实际问题的解,例1 某公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少要多少m才能使喷出的水流不致落到池外?,典例精析,解:建立如图所示的坐标系, 根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25).,● C,● D,根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.,当y=0时,可求得点C的坐标为(2.5,0) ; 同理,点 D的坐标为(-2.5,0) .,设抛物线为y=a(x+h)2+k,由待定系数法可求得抛物线表达式为:y=- (x-1)2+2.25.,例2:如图,一名运动员在距离篮球圈中心4m(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少米?,,解:如图,建立直角坐标系. 则点A的坐标是(1.5,3.05),篮球在最大高度时的位置为B(0,3.5). 以点C表示运动员投篮球的出手处.,解得,设以y轴为对称轴的抛物线的解析式为 y=a(x-0)2+k , 即y=ax2+k.而点A,B在这条抛物线上,所以有,所以该抛物线的表达式为y=-0.2x2+3.5. 当 x=-2.5时,y=2.25 . 故该运动员出手时的高度为2.25m.,问题1 图中是抛物线形拱桥,当拱顶离水面 2m时,水面宽 4m . 水面下降 1m,水面宽度增加多少?,互动探究,(1)求宽度增加多少需要什么数据?,(2)表示水面宽的线段的端点在哪条曲线上?,(3)如何求这组数据?需要先求什么?,(4)图中还知道什么?,(5)怎样求抛物线对应的函数的解析式?,想一想,问题2 如何建立直角坐标系?,l,问题3 解决本题的关键是什么?,,,y,x,o,解:如图建立直角坐标系.,解:建立合适的直角坐标系.,,,y,x,o,解:如图建立直角坐标系.根据题意可设该拱桥形成的抛物线的解析式为y=ax2+2. ∵该抛物线过(2,0), ∴0=4a+2,a=,∵水面下降1m,即当y=-1时, ∴水面宽度增加了 米.,有一座抛物线形拱桥,正常水位时桥下水面宽度为 20 m,拱顶距离水面 4 m.如图所示的直角坐标系中,求出这条抛物线表示的函数的解析式;,解:设该拱桥形成的抛物线的解析式为y=ax2. ∵该抛物线过(10,-4), ∴-4=100a,a=-0.04 ∴y=-0.04x2.,练一练,,例3 如果要使运动员坐着船从圣火的拱形桥下面穿过入场,现已知拱形底座顶部离水面 2 m,水面宽 4 m,为了船能顺利通过,需要把水面下降 1 m,问此时水面宽度增加多少?,,,,,-3,(-2,-2) ●,● (2,-2),,4米,当 时, 所以,水面下降1m,水面的宽度为 m.,所以水面的宽度增加了 m.,解:建立如图所示坐标系,,由抛物线经过点(2,-2),可得,所以,这条抛物线的解析式为,当水面下降1m时,水面的纵坐标为,● (2,-2),设二次函数解析式为,,,,,,如果要使运动员坐着船从圣火的拱形底座下穿过入场,现已知拱形底座顶部离水面 2 m,水面宽 4 m,为了船能顺利通过,需要把水面下降 1 m,问此时水面宽度增加多少?,4 m,4 m,请同学们分别求出对应的函数解析式.,O,O,解:设y=-ax2+2将(-2,0)代入得a= ∴y= +2;,设y=-a(x-2)2+2将(0,0)代入得a= ∴y= +2;,,当堂练习,1.足球被从地面上踢起,它距地面的高度h(m)可用公式h= -4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在 s后落地.,4,2.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式为 ,那么铅球运动过程中最高点离地面的距离为 米.,2,,3.公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O点恰在水面中心,OA=1.25米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下.为使水流较为漂亮,要求设计成水流在离OA距离为1米处达到距水面最大高度2.25米.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流落不到池外?,,O,A,,,,,1.25米,,,O,A,,解:如图建立坐标系,设抛物线顶点为B,水流落水与x轴交于C点.由题意可知A( 0,1.25)、B( 1,2.25 )、C(x0,0).,x,y,,,设抛物线为y=a(x-1)2+2.25 (a≠0),,点A坐标代入,得a= - 1;,当y= 0时, x1= - 0.5(舍去), x2=2.5,∴水池的半径至少要2.5米.,∴抛物线为y=-(x-1)2+2.25.,1.25,课堂小结,实际问题,数学模型,(二次函数的图像和性质),拱桥问题,运动中的抛物线问题,(实物中的抛物线形问题),转化的关键,建立恰当的直角坐标系,能够将实际距离准确的转化为点的坐标; 选择运算简便的方法.,,,,见《学练优》本课时练习,课后作业,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.