
高中数学 任意角和弧度制教学案 新人教A版必修4.doc
7页...wd...1.1 《任意角和弧度制》教案【教学目标】1.理解任意角的概念.2.学会建设直角坐标系讨论任意角,判断象限角,掌握终边一样角的集合的书写.3.了解弧度制,能进展弧度与角度的换算. 4.认识弧长公式,能进展简单应用.对弧长公式只要求了解,会进展简单应用,不必在应用方面加深.5.了解角的集合与实数集建设了一一对应关系,培养学生学会用函数的观点分析、解决问题.【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系 提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题.3.初中的角是如何度量的度量单位是什么4.1°的角是如何定义的弧长公式是什么5.角的范围是什么如何分类的新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点,从起始位置旋转到终止位置,形成一个角,点是角的顶点,射线分别是角的终边、始边.说明:在不引起混淆的前提下,“角〞或“〞可以简记为.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角.说明:零角的始边和终边重合.3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与轴的非负轴重合,则〔1〕象限角:假设角的终边〔端点除外〕在第几象限,我们就说这个角是第几象限角.例如:都是第一象限角;是第四象限角.〔2〕非象限角〔也称象限间角、轴线角〕:如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:等等.说明:角的始边“与轴的非负半轴重合〞不能说成是“与轴的正半轴重合〞.因为轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特殊角看出:所有与角终边一样的角,连同角自身在内,都可以写成的形式;反之,所有形如的角都与角的终边一样.从而得出一般规律:所有与角终边一样的角,连同角在内,可构成一个集合,即:任一与角终边一样的角,都可以表示成角与整数个周角的和.说明:终边一样的角不一定相等,相等的角终边一定一样.例1 在与范围内,找出与以下各角终边一样的角,并判断它们是第几象限角〔1〕;〔2〕;〔3〕.解:〔1〕,所以,与角终边一样的角是,它是第三象限角;〔2〕,所以,与角终边一样的角是角,它是第四象限角;〔3〕,所以,角终边一样的角是角,它是第二象限角.例2 假设,试判断角所在象限.解:∵∴与终边一样, 所以,在第三象限.例3 写出以下各边一样的角的集合,并把中适合不等式的元素写出来:〔1〕;〔2〕;〔3〕.解:〔1〕,中适合的元素是〔2〕,S中适合的元素是〔3〕S中适合的元素是例4写出第一象限角的集合.分析:〔1〕在内第一象限角可表示为;〔2〕与终边一样的角分别为;〔3〕第一象限角的集合就是夹在这两个终边一样的角中间的角的集合,我们表示为:.学生讨论,归纳出第二、三、四象限角的集合的表示法:;;.说明:区间角的集合的表示不唯一.例5 写出所夹区域内的角的集合.解:当终边落在上时,角的集合为; 当终边落在上时,角的集合为;所以,按逆时针方向旋转有集合:.二、弧度制与弧长公式1.角度制与弧度制的换算:∵360°=2p〔rad〕,∴180°=p rad.∴ 1°=2.弧长公式:.由公式:. 比公式简单.弧长等于弧所对的圆心角〔的弧度数〕的绝对值与半径的积 3.扇形面积公式 ,其中是扇形弧长,是圆的半径.注意几点:1. 今后在具体运算时,“弧度〞二字和单位符号“rad〞可以省略,如:3表示3rad , sinp表示prad角的正弦;2.一些特殊角的度数与弧度数的对应值应该记住:角度0°30°45°60°90°120°135°150°180°弧度角度210°225°240°270°300°315°330°360°弧度3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建设一种一一对应的关系.正角零角负角正实数零负实数任意角的集合 实数集R例6把以下各角从度化为弧度:(1);〔2〕;(3) ;(4).解:(1) 〔2〕 (3) (4)变式练习:把以下各角从度化为弧度: (1)22º30′;〔2〕-210º;(3)1200º. 解:(1) ;〔2〕;(3).例7把以下各角从弧度化为度:〔1〕;(2) 3.5;(3) 2;(4).解:〔1〕108 º;(2)200.5º;(3)114.6º;(4)45º.变式练习:把以下各角从弧度化为度: 〔1〕;〔2〕-;〔3〕. 解:〔1〕15 º;〔2〕-240º;〔3〕54º.例8知扇形的周长为8,圆心角为2rad,,求该扇形的面积.解:因为2R+2R=8,所以R=2,S=4.课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵活运用; 4.象限角与相衔接集奥的写法,终边一样的角的写法.作业 习题A组 1 3 5 见《同步练习》拓展提升1. 假设时针走过2小时40分,则分针走过的角是多少2. 以下命题正确的选项是: 〔 〕 〔A〕终边一样的角一定相等. 〔B〕第一象限的角都是锐角. 〔C〕锐角都是第一象限的角. 〔D〕小于的角都是锐角.3. 假设a是第一象限的角,则是第象限角.4.一角为,其终边按逆时针方向旋转三周后的角度数为__.5.集合M={α=k,k∈Z}中,各角的终边都在〔〕 A.轴正半轴上, B.轴正半轴上,C.轴或轴上, D.轴正半轴或轴正半轴上6.设,,那么有〔〕. A. B.C.〔〕 D.7.设,,C={α|α= k180o+45o,k∈Z},,.则相等的角集合为__.8.在中,假设,求A,B,C弧度数.9.直径为20cm的滑轮,每秒钟旋转,则滑轮上一点经过5秒钟转过的弧长是多少10.选做题如图,扇形的面积是,它的周长是,求扇形的中心角及弦的长.11.在~间,找出与以下各角终边一样的角,并判定它们是第几象限角:〔1〕;〔2〕;〔3〕.参考答案1. 解:2小时40分=小时,.故分针走过的角为480..2. C 3. 一或三 4.5. C 6.C7.B=D,C=E8.答案:A=;B=;C=9.答案:10.答案:11.解:〔1〕∵,∴与角终边一样的角是角,它是第三象限的角;〔2〕∵,∴与终边一样的角是,它是第四象限的角; 〔3〕, 所以与角终边一样的角是,它是第二象限角.。












