
2022年全国各地中考数学压轴题参考答案及评分标准(二).docx
13页本文格式为Word版,下载可任意编辑2022年全国各地中考数学压轴题参考答案及评分标准(二) 2022年全国各地中考数学压轴题 参考答案及评分标准(二) 101.解:(1)当t=4-3时,四边形FBCG为正方形. ················································· 1分 当0<t≤4时,四边形AEGD为平行四边形. ············································ 2分 (2)由题意知点D、C的坐标分别为(1,3),(5,3) ······························· 4分 ∵抛物线经过原点O(0,0),∴设抛物线的解析式为y=ax+bx(a≠0). 2 将D、C两点坐标代入得 ?3a=-???a+b= 3?5 ·,解得?································································· 6分 ???b=63?25a+5b= 3?5?∴抛物线的解析式为y=-(3)存在. 3263x+x ··················································· 7分 55 ∵点Q在抛物线上,∴点Q(x,-过点Q作QM⊥x轴于M,如图. 3263x+x) 55 y Q D G C ∵∠DAB=60°,CD=4,∴AB=5. ∴S△ABQ= 1AB·QM 2O (A) E F M B 32631=×5×|-x+x| 55212 =|-3x+63x| ····································································· 8分 2 x ∵EG的延长线与抛物线交于x轴的上方 32632x+x>0,∴-3x+63x>0. 5512 ∴S△ABQ=(-3x+63x) 2∴- ∵S梯形ABCD= 1(CD+AB)·BC 231(4+5)×2× 229=························································································ 9分 3 ·2= 若S△ABQ=S梯形ABCD,那么 2 192 (-3x+63x)=3. 22 整理得x-6x+9=0,解得x=3. ···························································· 10分 把x=3代入抛物线的解析式,得y=- 36392 ×3+×3=3,即MQ555 = 93. 593MQ95∵∠QEM=60°,∴EM===. ······································ 11分 o5tan603∴t=3- 96=(秒). 55∴存在这样的时刻t,使得△ABQ的面积与梯形ABCD的面积相等,此时t =6秒. 5····································································································· 12分 102.解:(1)A(0,2),B(4,0) ····················································································· 2分 设直线AB的解析式为y=kx+b,那么有 1??b= 2?k =-,解得?2 ?4k+b= 0???b= 2y A D ∴直线AB的解析式为y=- 1x+2. ······································ 3分 2O E C B x 图① (2)ⅰ)①当点E在原点和x轴正半轴上时,重叠片面为△CDE,如图① ∴S=S△CDE= 11CE·CD=BC·CD 22 = 1112 (4-x)(-x+2)=x-2x+4 2241BO=2,∴2≤x<4. ···················· 4分 2∵当点E与原点O重合时,CE= ②当点E在x轴的负半轴上时,设DE与y轴交于点F,那么重叠片面为梯形CDFO,如 图② ∵△FEO∽△ABO,∴ OA11OF==,∴OF=OE. 22OEOBF E O y A D B x 1又∵OE=4-2x,∴OF=(4-2x)=2-x 2∴S=S梯形CDFO= 1(OF+CD)·OC 2 C 1132 x+2x. ················ 5分 =[2-x+(-x+2)]· x=- 224图② ∵当点C与原点O重合时,点C的坐标为(0,0) ∴0<x<2. ······························································································ 6分 ?32-x+2x(0<x<2) ??4综合①②得S=? ··················································· 7分 1?x2-2x+4(2≤x<4) ??4 2121x-2x+4=(x-4),∴抛物线的对称轴为x44 ⅱ)①∵当2≤x<4时,S= =4 ∵抛物线开口向上,∴当2≤x<4时,S随x的增大而减小 ∴当x=2时,S的最大值=②当0<x<2时,S=- 轴为x= 4 3 21····································· 8分 (2-4)=1. · 4323424x+2x=-(x-)+,∴抛物线的对称4433∵抛物线开口向下,∴当x=综合①②,当x= 44时,S有最大值为. ····················· 9分 3344时,S有最大值为. ······································ 10分 3335,0)和(,0). ····································· 14分 22ⅲ)存在,点C的坐标为( 附:详解:①当Rt△ADE以点A为直角顶点时,作AE⊥AB交x轴负半轴于点E, 如图③ ∵Rt△AOE∽Rt△BOA,∴∵OA=2,∴OE=1 ∵OE+2OC=4,∴OC=∴点C的坐标为( 13×(4-1)= 22E O OEOA1== 2OAOBy A D C B x 3,0) 2y A 图③ ②当Rt△ADE以点E为直角顶点时,如图④ ∵∠AED=90°,∴∠AEO+∠DEC=90° ∵∠DEC=∠DBC,∴∠AEO+∠DBC=90° ∵∠BAO+∠DBC=90°,∴∠AEO=∠BAO ∴Rt△AOE∽Rt△BOA,∴∴OC=1+ OEOA1==,∴OE=1 2OAOBO E D C B x 图④ 15×(4-1)= 225,0) 2∴点C的坐标为( 综上所述,存在这样的点C,使得△ADE为直角三角形,点C的坐标为: C1( 103.解:(1)把x=0代入y=-2x+4,得y=4. ∴C(0,4). ··································································································· 1分 35,0)和C2(,0) 22 ∵矩形OABC,∴BC=OA=3,AB=OC=4. ∴B(-3,4). ································································································ 2分 (2)∵二次函数y=- 12 x+bx+c的图象经过B、C两点 2 3?1?2?-?(-3)-3b+c = 4?b =?∴?2 解得?··············································· 4分 2 ·???c = 4?c = 4∴二次函数的解析式为y=- 123x-x+4. ················································· 6分 22 (3)证明:连结AC,在Rt△AOC中,AC=OA2+OC2=32+42=5. ∵y=-2x+4,当y=0时,x=2,∴D(2,0). ∵AD=OA+OD=3+2=5,∴AC=AD. ∵P是CD的中点,∴AP⊥CD. ··································································· 9分 (4)存在. ············································································································· 10分 方法一:假设四边形APCM为矩形,过点M作MN⊥x轴于N. 在Rt△COD中,∵CD=OC2+OD2=42+22=25. 1∴MA=PC=CD=5 2∵MA∥CD,∴∠MAN=∠CDO. 又∵∠MNA=∠COD=90°,∴△MNA∽△COD. ····································· 12分 ∴ MNNAMA. == COODCD525y B 525C P D O x ∴MN=4?=2,NA=2?=1. M N A ∵NO=NA+OA=1+3=4 ∴M(-4,2). ················································· 13分 把x=-4代入y=- 123132 x-x+4,得y=-×(-4)-×(-4)+4=2. 2222 ∴点M在抛物线上. ∴存在这样的点M,使以A、P、C、M为顶点的四边形为矩形. ············ 14分 方法二(原参考答案中没有,本人添加,仅供参考): 过点作AM∥CD交抛物线于点M,连结CM. ∵MA∥CD,直线CD的斜率为-2. ∴设直线MA的解析式为y=-2x+m,把A(-3,0)代入,得m=-6. ∴直线MA的解析式为y=-2x-6 ?y =-2x-6?x =-4?联立? 解得 ?123y = 2y =-x-x+4??22? ∴M(-4,2). ∴MA=(-4+3)2+22=5 在Rt△COD中,∵CD=OC2+OD2=42+22=25. 1∴PC=CD=5 2∴MA=PC. ∵MA∥CD,∴四边形APCM为平行四边形. 又∵A。
