好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

基于振幅调制的菲涅耳域的光学图像加密技术.docx

17页
  • 卖家[上传人]:杨***
  • 文档编号:311475734
  • 上传时间:2022-06-15
  • 文档格式:DOCX
  • 文档大小:32.98KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    •     基于振幅调制的菲涅耳域的光学图像加密技术    程学彩++王玉杰++赵俊梅: 10055630(2014)02011606收稿日期: 20131111基金项目: 滁州学院科研启动基金(2012qd10)Reference: 针对基于菲涅耳域的双随机相位加密系统不能抵抗选择明文攻击的弱点,提出了一种基于振幅调制的菲涅耳域的图像加密方法该方法通过在系统第二块随机相位板后面添加一个振幅调制密钥来实现加密,同时分析了该密钥的安全性,密钥参数对加密效果的影响实验表明振幅调制密钥的密钥空间非常大,且正常解密时密钥吻合度要求非常高,攻击者很难获取原始图像的信息;另一方面引入振幅调制密钥后扰乱了系统固有的线性性质,添加非线性环节,从而提高了系统的抗选择明文攻击能力研究可知:引入振幅调制技术后系统的安全性和抗攻击能力大大提高,加密效果良好Keys: 信息安全; 图像加密; 双随机相位; 菲涅耳变换TP 751.2: Adoi: 10.3969/j.issn.10055630.2014.02.006Optical image encryption technique based on amplitude modulation in the Fresnel domainCHENG Xuecai, WANG Yujie, ZHAO Junmei(College of Mechanical and Electronic Engineering, Chuzhou University, Chuzhou 239000, China)Abstract: Double random phase encoding system in the Fresnel domain has a vulnerability to a chosenplaintext attack. To overcome this weakness, an image encryption method based on amplitude modulation is proposed. It is implemented by adding a key for amplitude modulation behind the second random phase mask, also the security of the key and the effects of parameter on the performance of the encryption are systematically analyzed. The experiments show that the key space for amplitude modulation is huge, and moreover the key requires a high conformability for normal decryption. It is very difficult for attackers to obtain the information of the original image. Meanwhile, as an additional nonlinear operation, the introduced key can disturb the linearity of the system, thus enhancing the resistance against to a chosenplaintext attack. Research has proved that the security and resistance against attacks of the system are highly enhanced with amplitude modulation, thus the effect of encryption is well.Key words: information security; image encryption; double random phase; Fresnel transform引言近年来,光学图像加密技术以其高处理速度、并行处理能力以及多维的信息处理载体等优势越来越受到人们的关注。

      特别是自1995年Refregier和Javidi提出基于4f系统的双随机相位加密系统[1]以来,图像加密技术得到了广泛的重视,许多新的图像加密技术和信息隐藏手段陆续被提出[25]Situ等人还成功地将该方法推广到菲涅耳域,利用两块随机相位板和菲涅耳衍射变换实现图像加密,加密装置更简单、紧凑且不再需要透镜,入射波长、衍射距离等都可以作为系统添加的密钥,增加了密钥维数,具有明显的优势[6],但这些加密系统的安全性始终未得到全面而系统地分析[7]近几年来,Peng等人指出双随机相位编码系统存在安全隐患,明密文间的函数关系较简单,不能抵抗唯密文,已知明文攻击等[89]基于菲涅耳域的双随机相位加密系统也被指出由于本质上仍然是一个线性系统,不能抵抗选择明文攻击[10],系统的安全性受到质疑因此,如何提高该图像加密系统的安全性是一个亟待解决的问题基于菲涅耳域的双随机相位编码系统由于其安全隐患来源于系统的线性性质,若想提高该加密系统的安全性,重要的是从其本质出发,引入非线性变换,使得基于线性算法的攻击方法无能为力本文提出将振幅调制引入到基于菲涅耳域的双随机相位编码系统中,添加非线性操作,打破系统固有的线性,从而提高系统的抗选择明文攻击能力。

      图1基于振幅调制的菲涅耳域的双随机相位编码系统示意图Fig.1Schematic diagram of double random phase encoding system based on amplitude modulation in the Fresnel domain1加密原理基于振幅调制的菲涅耳域的双随机相位编码系统如图1所示,该系统包括三个平面:输入平面、变换平面和输出平面,其坐标分别为(x0,y0)、(x1,y1)和(x,y),其中,输入平面和变换平面的距离为z1,变换平面和输出平面的距离为z2 f(x0,y0)为待加密图像,PM1和PM2为分别放置在输入平面和变换平面的两块随机相位板,复振幅透过率分别表示为exp[in1(x0,y0)]和exp[ib1(x1,y1)],其中n1(x0,y0)和b1(x1,y1)为两个随机分布在(0,2π)之间的白噪声与传统的菲涅耳域的图像加密系统不同的是该系统紧贴在第二块随机相位板PM2后面放置了一个振幅调制密钥M,该密钥不同位置处各像素元的振幅透过率不同,因此可以对该处的图像施加一个振幅调制操作光学仪器第36卷第2期程学彩,等:基于振幅调制的菲涅耳域的光学图像加密技术加密过程如下:待加密图像f(x0,y0)与随机相位板PM1的信息exp[in1(x0,y0)]相乘后,经过衍射距离为z1的傅里叶变换后从输入平面到达变换平面。

      假定入射平面波波长为λ,波数为k,在满足菲涅耳近似的情况下,利用傅里叶变换形式的菲涅耳衍射公式[11],变换平面的复振幅可以表示为U1(x1,y1)=1iλz1exp(ikz1)expik2z1(x21+y21)×FTf(x0,y0)exp[in1(x0,y0)]expik2z1(x20+y20)(1)式中,FT为傅里叶变换操作假定振幅调制密钥分布函数为M(x1,y1),在变换平面,经过随机相位板exp[ib1(x1,y1)]和振幅调制密钥M(x1,y1)调制后进行一个衍射距离为z2的傅里叶变换后到达输出平面,则输出平面的复振幅表示为g(x,y)=1iλz2exp(ikz2)expik2z2(x2+y2)×FTU1(x1,y1)exp[ib1(x1,y1)]M(x1,y1)expik2z2(x21+y21)(2)g(x,y)即为基于振幅调制的菲涅耳域的双随机相位加密系统加密后的密文从加密过程可以分析,该加密系统的密钥除了传统的基于菲涅耳域的图像加密系统,密钥包括入射光波的波长、衍射距离z1和z2、相位板的信息exp[in1(x0,y0)]和exp[ib1(x1,y1)]外,添加了一个振幅调制密钥,增加了密钥的维数。

      解密时,首先构筑振幅调制器的解密密钥MC(x1,y1),对密文g(x,y)进行一个衍射距离为z2的逆傅里叶变换,得到U1(x1,y1)exp[ib1(x1,y1)]M(x1,y1),在变换平面与振幅调制的解密密钥MC(x1,y1)、相位板PM2的解密密钥exp[-ib1(x1,y1)]相乘后进行一个衍射距离为z1的逆傅里叶变换恢复可得到mf(x0,y0)exp[in1(x0,y0)]m为考虑系统由于添加的振幅调制密钥使图像整体振幅造成的透过率系数,取值为介于(0,1]之间的数值若输入图像为实值图像,直接取模可求得mf(x0,y0);若输入图像为复函数,需经相位板PM1的解密密钥exp[-in1(x0,y0)]恢复可得到mf(x0,y0)分析可知,利用正确的密钥解密恢复的图像与原始图像仅相差一个常数因子,不会影响解密图像的图像质量,可以无失真地恢复原始图像2系统有效性的模拟验证为了验证基于振幅调制的菲涅耳域的双随机相位加密系统的加密效果,在MATLAB 7.0环境下进行了一系列计算机模拟实验模拟实验中,采用相关系数CC来评价解密图像f0和原始图像f的相似程度,其定义为CC=cov(f,f0)σfσf0=E{[f-E(f)][f0-E(f0)]}{E{[f-E(f)]2}E{[f0-E(f0)]2}}1/2(3)其中cov(f,f0)代表相关操作,σ为标准差,E为数学期望。

      假定入射光波的波长为532 nm,衍射距离z1=0.10 m,z2=0.10 m,采用如图2(a)所示的灰度图像Lena作为待加密图像,其像素大小为256×256相位板PM1、PM2的信息分别如图2(b)、(c)所示对未加振幅调制即传统的基于菲涅耳域的双随机相位编码系统,利用两块随机相位板进行两次变换加密后得到的密文如图2(d)所示若考虑在相位板PM2后面添加一个振幅调制密钥M(x1,y1),像素大小也为256×256,理论上,该振幅调制密钥含有的65 536个像素单元的振幅透过率可以取介于(0,1]之间的任意数值,取值为1代表该像素位置处振幅全部透过,透过率为100%,介于0到1之间即为该像素位置处振幅部分透过因此可以想象,该密钥的密钥空间非常大,未授权的非合法用户很难根据穷举法获取振幅调制密钥的全部信息图2系统的待加密图像、密钥及密文Fig.2Image to be encrypted,encrypted keys and ciphertext of the system进行图像加密时,假定使用的振幅调制密钥各个像素处的振幅透过率只有1和0.01两个取值,其中12.5%(即65 536×12.5%=8 192个)的像素处振幅透过率为1,剩余像素(65 536-8 192=57 344个)振幅透过率为0.01,并且调制密钥中振幅透过率为1和透过率为0.01的各个像素是随机排列的,如图2(e)所示。

      添加振幅调制密钥的加密系统加密后的密文如图2(f)所示,是一片均匀的白噪声分布可见,加上振幅调制密钥的密文图2(f)与未加振幅调制密钥的密文图2(d)外观上看不出区别,因此添加的振幅调制密钥具有一定的隐蔽性,在一定程度上可以迷惑攻击者解密时,振幅调制器的解密密钥MC(x1,y1)同加密时的振幅调制密钥正好是互补的,即加密时振幅透过率为0.01的像素解密时,该像素振幅透过率为1,加密时振幅调制器的振幅透过率为0.01的像素解密时,该像素振幅透过率为1因此振幅调制的解密密钥像素排列同加密时用的。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.