好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

(新课标)2018届高考数学二轮复习 专题能力训练4 二次函数及函数方程 理.doc

4页
  • 卖家[上传人]:简****9
  • 文档编号:97919685
  • 上传时间:2019-09-07
  • 文档格式:DOC
  • 文档大小:85.50KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题能力训练4 二次函数及函数方程(时间:60分钟 满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知函数f(x)=ax2-2x+2,若对一切x∈,f(x)>0都成立,则实数a的取值范围为(  )                A. B. C.[-4,+∞) D.(-4,+∞)2.函数f(x)=3x-x2的零点所在区间是(  )A.(0,1) B.(1,2) C.(-2,-1) D.(-1,0)3.(2017浙江杭州二中模拟)已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是(  )A.(-∞,-1) B.(-∞,-1] C.[-1,0) D.(0,1]4.已知f(x)=ax2+bx+c(a>0),g(x)=f(f(x)),若g(x)的值域为[2,+∞),f(x)的值域为[k,+∞),则实数k的最大值为(  )A.0 B.1 C.2 D.45.已知f(x)是奇函数且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是(  )A. B. C.- D.-6.已知f(x)是定义在R上的奇函数,且f(x)在[0,+∞)上为增函数,如果f(x2+ax+a)≤f(-at2-t+1)对任意的x∈[1,2],任意的t∈[1,2]恒成立,则实数a的最大值为(  )A.-1 B.- C.- D.-37.已知函数f(x)=若关于x的方程f2(x)-3f(x)+a=0(a∈R)有8个不等的实数根,则a的取值范围是(  )A. B. C.(1,2) D.8.(2017浙江湖州期末)已知f(x)是R上的奇函数,当x≥0时,f(x)=则函数y=f(x)+的所有零点之和是(  )A.1- B.-1 C.5- D.-5二、填空题(本大题共6小题,每小题5分,共30分)9.已知函数f(x)=ax-x+b的零点x0∈(k,k+1)(k∈Z),其中常数a,b满足3a=2,3b=,则k=     . 10.设函数y=x2-2x,x∈[-2,a],若函数的最小值为0,则a=     . 11.已知函数f(x)=x|x-a|,若对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]>0恒成立,则实数a的取值范围为     . 12.已知函数f(x)满足f(x+1)=-x2-4x+1,函数g(x)=有两个零点,则m的取值范围为     . 13.若f(x)=x2+ax+b(a,b∈R),x∈[-1,1],且|f(x)|的最大值为,则4a+3b=     . 14.(2017浙江名校协作体联盟二模)已知函数f(x)=x2+nx+m,若{x|f(x)=0}={x|f(f(x))=0}≠⌀,则m+n的取值范围是     . 三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)已知二次函数f(x)=ax2+bx+c,其中常数a,b,c∈R.(1)若f(3)=f(-1)=-5,且f(x)的最大值是3,求函数f(x)的解析式;(2)若a=1,对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围.16.(本小题满分15分)已知a,b∈R,函数f(x)=x2+ax+b.(1)若a=-2,且函数y=|f(x)|在区间[-1,2]上的最大值为2,求实数b的值;(2)设max{m,n}=g(x)=a(x-1),其中a≠0,若函数h(x)=max{f(x),g(x)}在区间(-1,2)内有两个不同的零点,求2a+b的取值范围.参考答案专题能力训练4 二次函数及函数方程1.B2.D 解析 ∵f(-2)=-,f(-1)=-,f(0)=1,f(1)=2,f(2)=5,∴f(0)f(1)>0,f(1)f(2)>0,f(-2)f(-1)>0,f(-1)f(0)<0.故选D.3.D 解析 因为当x>0时,f(x)=2x-1,由f(x)=0得x=.所以要使f(x)在R上有两个零点,必须2x-a=0在(-∞,0]上有唯一实数解.又当x∈(-∞,0]时,2x∈(0,1],且y=2x在(-∞,0]上单调递增,故所求a的取值范围是(0,1],应选D.4.C 解析 设t=f(x),由题意可得g(x)=f(t)=at2+bt+c,t≥k,函数y=at2+bt+c,t≥k的图象为函数y=f(x)的图象的一部分,即有函数g(x)的值域为函数f(x)的值域的子集,即[2,+∞)⊆[k,+∞),可得k≤2.故k的最大值为2.5.C 解析 令y=f(2x2+1)+f(λ-x)=0,则f(2x2+1)=-f(λ-x)=f(x-λ),因为f(x)是R上的单调函数,所以2x2+1=x-λ只有一个实根,即2x2-x+1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-.故选C.6.A 解析 由条件知函数f(x)在R上为单调递增函数,整理得x2+ax-1+at2+t+a≤0,记g(x)=x2+ax-1+at2+t+a,则由题意知只要代入对a分离得从而解得即a≤-1.故选A.7.D 解析 令t=f(x),作出函数f(x)的图象和t=m的图象(如图所示),若关于x的方程f2(x)-3f(x)+a=0(a∈R)有8个不等的实数根,则关于t的方程t2-3t+a=0(a∈R)有2个不等的实数根t1,t2,且10,f(2)=a2-2+b=a2-2a=a(a-2)<0,故x0∈(1,2),k=1.10.0 解析 因为函数y=x2-2x=(x-1)2-1,所以其图象的对称轴为直线x=1,因为x=1不一定在区间[-2,a]内,所以要进行讨论.当-21时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,y取得最小值,即ymin=-1.不合题意.故a=0.11.(-∞,2] 解析 f(x)=由(x1-x2)[f(x1)-f(x2)]>0知,函数y=f(x)在[2,+∞)单调递增,当a≤0时,满足题意;当a>0时,根据函数图象可知只需a≤2,即01,即|b|>2时,M=|f(1)-f(-1)|=|2b|>4,与M≤4矛盾;当≤1,即|b|≤2时,M=max{f(1),f(-1)}-f-f≤4,解得|b|≤2,即-2≤b≤2.综上,b的取值范围为-2≤b≤2.16.解 (1)当a=-2时,f(x)=x2-2x+b=(x-1)2+b-1.所以f(x)在区间[-1,1]上递减,在区间[1,2]上递增.所以f(x)在区间[-1,2]上的值域为[b-1,3+b].所以|f(x)|max=max{|b-1|,|b+3|}=2,解得b=-1.(2)①若f(1)<0,则x=1是h(x)的一个零点,从而只需满足利用线性规划知识可解得-4<2a+b<-1.②若f(1)=0,则解得-2<2a+b<-1.③若f(1)>0,ⅰ当a>0时,g(x)<0在区间(-1,1)上恒成立,所以只需满足f(x)在区间(-1,1)内有两个不同的零点.所以利用线性规划知识可解得-2<2a+b<5.ⅱ当a<0时,g(x)<0在区间(1,2)上恒成立,f(x)在区间(1,2)内有两个不同的零点.所以利用线性规划知识可解得-4<2a+b<-3.综上所述,2a+b的取值范围为(-4,-1)∪(-2,5).4。

      点击阅读更多内容
      相关文档
      礼仪讲授教案.docx 高考语文一轮复习讲义 第5部分 传统文化阅读·名句名篇默写.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 微任务 作文书写——比天还大的事儿.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组二 真题研练.docx 高考语文一轮复习讲义 第3部分 传统文化阅读 文言文(考点部分) 任务组三 任务四 仔细比对准确提取概括分析文意.docx 高考语文一轮复习讲义 第1部分 语言策略与技能 任务组二 任务五 看准对象因境设辞做到语言得体.docx 高考化学 1.传统文化与STSE 答案解析.docx 高考语文一轮复习讲义现代文阅读 专题16 Ⅱ 真题研练.docx 高考化学 专项拔高抢分练 9.反应热与反应历程.docx 高考化学 专项拔高抢分练 1.传统文化与STSE.docx 高考物理 板块三  气体实验定律和热力学定律的综合应用.docx 高考化学 二题型3 无机化工生产流程题.docx 高考语文一轮复习讲义 第4部分 写作 专题17 Ⅲ 突破二 绘声绘色巧用细节描写生动丰满.docx 高考数学 中档大题练1.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面教材文言文复习综合试卷.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组三 微任务一 聚焦诗意准确选择.docx 高考数学 创新融合4 数列与导数.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面 教材文言文点线面 必修5课文1 归去来兮辞 并序.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 任务二 “三管”齐下美“言”有术文采抢眼养颜.docx 高考数学 满分案例三 立体几何.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.