好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新高考数学二轮复习考法分类训练专题04 统计概率(解答题10种考法)(原卷版).doc

49页
  • 卖家[上传人]:gu****iu
  • 文档编号:598575533
  • 上传时间:2025-02-21
  • 文档格式:DOC
  • 文档大小:2.49MB
  • / 49 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题04 统计概率(解答题10种考法)考法一 超几何分布【例1-1】(2022·广东汕头·二模)袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等.(Ⅰ)求取出的3个小球上的数字互不相同的概率;(Ⅱ)用表示取出的3个小球上所标的最大数字,求随机变量的分布列和数学期望.【例1-2】(2023·陕西铜川·校考一模)某品牌厂为了更好地提升品牌的性能,进行了问卷调查,问卷满分为100分,现从中选出具有代表性的50份调查问卷加以研究.现将这50份问卷按成绩分成如下五组:第一组,3份;第二组,8份;第三组;第四组;第五组,4份;已知其中得分高于60分的问卷份数为20.(1)在第二组与第四组问卷中任取两份,这两份问卷成绩得分差不低于20分的概率;(2)如果在这50份调查问卷中随机取4份,其中及格份数记为随机变量X,写出X的分布列(结果只要求用组合数表示),并求出期望.【例1-3】(2023广东湛江)为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下:(1)若甲单位数据的平均数是122,求;(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为, ,令,求的分布列和期望.【例1-4】(2023云南某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为1,2,3,4,5的五批疫苗,供全市所辖的,,三个区市民接种,每个区均能从中任选一个批号的疫苗接种.(1)求三个区市民接种的疫苗批号中恰好有两个区相同的概率;(2)记,,三个区选择的疫苗批号的中位数为,求的分布列.考法二 二项分布【例2-1】(2023·辽宁·辽宁实验中学校考模拟预测)近年来,我国加速推行垃圾分类制度,全国垃圾分类工作取得积极进展.某城市推出了两套方案,并分别在A,B两个大型居民小区内试行.方案一:进行广泛的宣传活动,通过设立宣传点、发放宣传单等方式,向小区居民和社会各界宣传垃圾分类的意义,讲解分类垃圾桶的使用方式,垃圾投放时间等,定期召开垃圾分类会议和知识宣传教育活动;方案二:智能化垃圾分类,在小区内分别设立分类垃圾桶,垃圾回收前端分类智能化,智能垃圾桶操作简单,居民可以通过设备进行自动登录、自动称重、自动积分等一系列操作.建立垃圾分类激励机制,比如,垃圾分类换积分,积分可兑换礼品等,激发了居民参与垃圾分类的热情,带动居民积极主动地参与垃圾分类.经过一段时间试行之后,在这两个小区内各随机抽取了100名居民进行问卷调查,记录他们对试行方案的满意度得分(满分100分),将数据分成6组:并整理得到如下频率分布直方图:(1)请通过频率分布直方图分别估计两种方案满意度的平均得分,判断哪种方案的垃圾分类推广措施更受居民欢迎(同一组中的数据用该组中间的中点值作代表);(2)估计A小区满意度得分的第80百分位数;(3)以样本频率估计概率,若满意度得分不低于70分说明居民赞成推行此方案,低于70分说明居民不太赞成推行此方案.现从B小区内随机抽取5个人,用X表示赞成该小区推行方案的人数,求X的分布列及数学期望.【例2-2】(2023·北京顺义·统考一模)为调查A,B两种同类药物在临床应用中的疗效,药品监管部门收集了只服用药物A和只服用药物B的患者的康复时间,经整理得到如下数据:康复时间只服用药物A只服用药物B7天内康复360人160人8至14天康复228人200人14天内未康复12人40人假设用频率估计概率,且只服用药物A和只服用药物B的患者是否康复相互独立.(1)若一名患者只服用药物A治疗,估计此人能在14天内康复的概率;(2)从样本中只服用药物A和只服用药物B的患者中各随机抽取1人,以X表示这2人中能在7天内康复的人数,求X的分布列和数学期望:(3)从只服用药物A的患者中随机抽取100人,用“”表示这100人中恰有k人在14天内未康复的概率,其中.当最大时,写出k的值.(只需写出结论)考法三 相互独立事件【例3-1】(2022·全国·统考高考真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.【例3-2】(2023·湖南·模拟预测)党的二十大胜利召开,某单位组织举办“百年党史”知识对抗赛,组委会将参赛人员随机分为若干组,每组均为两名选手,每组对抗赛开始时,组委会随机从百年党史题库抽取道抢答试题,每位选手抢到每道试题的机会相等比赛细则为:选手抢到试题且回答正确得分,对方选手得分选手抢到试题但回答错误或没有回答得分,对方选手得分道题目抢答完毕后得分多者获胜已知甲、乙两名选手被分在同一组进行对抗赛,每道试题甲回答正确的概率为,乙回答正确的概率为,两名选手每道试题回答是否正确相互独立.(1)求乙同学得分的概率(2)记为甲同学的累计得分,求的分布列和数学期望.考法四 正态分布【例4-1】(2023·全国·模拟预测)为落实体育总局和教育部发布的《关于深化体教融合,促进青少年健康发展的意见》,某校组织学生参加100米短跑训练.在某次短跑测试中,抽取100名女生作为样本,统计她们的成绩(单位:秒),整理得到如图所示的频率分布直方图(每组区间包含左端点,不包含右端点).(1)估计样本中女生短跑成绩的平均数;(同一组的数据用该组区间的中点值为代表)(2)由频率分布直方图,可以认为该校女生的短跑成绩X服从正态分布,其中近似为女生短跑平均成绩,近似为样本方差,经计算得,,若从该校女生中随机抽取10人,记其中短跑成绩在以外的人数为Y,求.附参考数据:,随机变量X服从正态分布,则,,,,,.【例4-2】(2023·江西·校联考一模)2020年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟跳绳个数得分17181920(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率;(2)若该校初三年级所有学生的跳绳个数,用样本数据的平均值和方差估计总体的期望和方差.已知样本方差(各组数据用中点值代替).根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步.假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:①全年级有1000名学生,预估正式测试每分钟跳182个以上人数;(结果四舍五入到整数)②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望.附:若,则.考法五 条件概率【例5-1】(2023·广东深圳·统考一模)某企业因技术升级,决定从2023年起实现新的绩效方案.方案起草后,为了解员工对新绩效方案是否满意,决定采取如下“随机化回答技术”进行问卷调查:一个袋子中装有三个大小相同的小球,其中1个黑球,2个白球.企业所有员工从袋子中有放回的随机摸两次球,每次摸出一球.约定“若两次摸到的球的颜色不同,则按方式Ⅰ回答问卷,否则按方式Ⅱ回答问卷”.方式Ⅰ:若第一次摸到的是白球,则在问卷中画“○”,否则画“×”;方式Ⅱ:若你对新绩效方案满意,则在问卷中画“○”,否则画“×”.当所有员工完成问卷调查后,统计画○,画×的比例.用频率估计概率,由所学概率知识即可求得该企业员工对新绩效方案的满意度的估计值.其中满意度.(1)若该企业某部门有9名员工,用X表示其中按方式Ⅰ回答问卷的人数,求X的数学期望;(2)若该企业的所有调查问卷中,画“○”与画“×”的比例为4:5,试估计该企业员工对新绩效方案的满意度.【例5-2】(2023·安徽蚌埠·统考二模)有研究显示,人体内某部位的直径约的结节约有0.2%的可能性会在1年内发展为恶性肿瘤.某医院引进一台检测设备,可以通过无创的血液检测,估计患者体内直径约的结节是否会在1年内发展为恶性肿瘤,若检测结果为阳性,则提示该结节会在1年内发展为恶性肿瘤,若检测结果为阴性,则提示该结节不会在1年内发展为恶性肿瘤.这种检测的准确率为85%,即一个会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阳性,一个不会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阴性.患者甲被检查出体内长了一个直径约的结节,他做了该项无创血液检测.(1)求患者甲检查结果为阴性的概率;(2)若患者甲的检查结果为阴性,求他的这个结节在1年内发展为恶性肿瘤的概率(结果保留5位小数);(3)医院为每位参加该项检查的患者缴纳200元保险费,对于检测结果为阴性,但在1年内发展为恶性肿瘤的患者,保险公司赔付该患者20万元,若每年参加该项检查的患者有1000人,请估计保险公司每年在这个项目上的收益.考法六 统计案例【例6-1】】(2023·浙江·永嘉中学校联考模拟预测)“体育强则国家强,国运兴则体育兴”,多参加体育运动能有效增强中学生的身体素质.篮球和排球是我校学生最为喜爱的两项运动,为调查喜爱运动项目与性别之间的关系,某调研组在校内随机采访男生、女生各50人,每人必须从篮球和排球中选择最喜爱的一项,其中喜爱排球的归为甲组,喜爱篮球的归为乙组,调查发现甲组成员48人,其中男生18人.(1)根据以上数据,填空下述列联表:甲组乙组合计男生女生合计(2)根据以上数据,能否有95%的把握认为学生喜欢排球还是篮球与“性别”有关?(3)现从调查的女生中按分层抽样的方法选出5人组成一个小组,抽取的5人中再随机抽取3人发放礼品,求这3人中在甲组中的人数的概率分布列及其数学期望.参考公式:,其中为样本容量.参考数据:0.500.050.010.4553.8416.635【例6-2】(2022·全国·高三专题练习)实施新规后,某商场2020年1月份至10月份的收入情况如表.月份12345678910收入(万元)10121513161715161620并计算得,,,.(1)是否可用线性回归模型拟合与的关系?请用相关系数加以说明;(当时,那么变量,有较强的线性相关关系)(2)建立关于的回归方程(结果保留1位小数),并预测该商场12月份的收入情况.(结果保留整数)附:,.。

      点击阅读更多内容
      相关文档
      2025年高考真题——俄语(全国卷) 无答案.doc 2025年高考真题——日语(全国卷) 含答案.doc 2021-2025年高考数学真题常用逻辑用语5种常见考法归类(原卷版).docx 2021-2025年高考数学真题平面向量9种常见考法归类(原卷版).docx 河北省石家庄市2025~2026学年高三上学期开学考试语文试卷[含答案].doc 2021-2025年高考数学真题等式与不等式、基本不等式及一元二次不等式9种常见考法归类(解析版).docx 2021-2025年高考数学真题圆锥曲线(选填题)16种常见考法归类(解析版).docx 2021-2025年高考数学真题集合11种常见考法归类(原卷版).docx 2021-2025年高考数学真题解三角形7种常见考法归类(解析版).docx 2021-2025年高考数学真题圆锥曲线(解答题)6种常见考法归类(原卷版).docx 2021-2025年高考数学真题空间向量与立体几何(选填题)8种常见考法归类(原卷版).docx 2021-2025年高考数学真题复数7种常见考法归类(原卷版).docx 2025年广东省广州市中考语文真题试卷[含答案].doc 山东省潍坊市2026届高三上学期开学考试语文试卷[含答案].doc 重庆市2026届高三上学期9月开学调研测试语文试卷[含答案].doc 2021-2025年高考数学真题排列组合与二项式定理5种常见考法归类(原卷版).docx 2021-2025年高考数学真题导数及其应用(选填题)8种常见考法归类(原卷版).docx 2021-2025年高考数学真题直线与圆10种常见考法归类(解析版).docx 2021-2025年高考数学真题概率与随机变量及分布列7种常见考法归类(解析版).docx 2021-2025年高考数学真题数列(选填题)14种常见考法归类(解析版).docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.