
广东省珠海九年级数学上册22.1一元二次方程第二课时学案人教新课标版.doc
5页22.1 一元二次方程 学案 第二课时 教学目标 了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重难点关键 1.重点:判定一个数是否是方程的根; 2.难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.学习过程一、复习引入 问题1.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为___________. 整理,得_________.列表:x012345678… 问题2.一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少? 设苗圃的宽为xm,则长为_______m. 根据题意,得________. 整理,得________.列表:x01234567891011 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少? (2)如果抛开实际问题,问题1中还有其它解吗?问题2呢? 老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解. (3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解. 为了与以前所学的一元一次方程等只有一个解的区别,我们称: 一元二次方程的解叫做一元二次方程的根. 回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1.下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 例2.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0 解: 三、应用拓展 例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪? 设长为xcm,则宽为(x-5)cm 列方程x(x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表: x1011121314151617…x2-5x-150 (3)你知道铁片的长x是多少吗? 作业设计 一、选择题 1.方程x(x-1)=2的两根为( ). A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 2.方程ax(x-b)+(b-x)=0的根是( ). A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2,x2=b2 3.已知x=-1是方程ax2+bx+c=0的根(b≠0),则=( ). A.1 B.-1 C.0 D.2 二、填空题 1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________. 2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________. 3.方程(x+1)2+x(x+1)=0,那么方程的根x1=______;x2=________. 三、综合提高题 1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值. 2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根. 3.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在()2-2x+1=0,令=y,则有y2-2y+1=0,根据上述变形数学思想(换元法),解决小明给出的问题:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根.答案:一、1.D 2.B 3.A二、1.9,-9 2.-13 3.-1,1-三、1.由已知,得a+b=-3,原式=(a+b)2=(-3)2=9.2.a+c=b,a-b+c=0,把x=-1代入得ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0,∴-1必是该方程的一根.3.设y=x2-1,则y2+y=0,y1=0,y2=-1,即当x2-1=0,x1=1,x2=-1;当y2=-1时,x2-1=-1,x2=0,∴x3=x4=0,∴x1=1,x2=-1,x3=x4=0是原方程的根.。
