好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

商务智能实验6报告.doc

12页
  • 卖家[上传人]:s9****2
  • 文档编号:497439932
  • 上传时间:2023-11-06
  • 文档格式:DOC
  • 文档大小:2.95MB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 《数据挖掘与商务智能实验》实 验 报 告实验题目:数据挖掘的基本数据分析 姓名:王俊 学号:201430850164 指导教师: 张大斌 实验时间:201611.10 2016年 11月 10日 实验题纲:一、 实验目的1) 熟悉基本数据分析的处理流程2) 进一步熟练掌握拍SPSS Modeler工具的操作二、 实验内容内容一:数据的质量探索步骤1 建立数据流1) 在“源”中通过拖入“Statistics”文件节点读入Telephone.sav数据2) 建立“类型”节点,并说明各个变量角色这里指定“流失”为目标变量3) 选择“输出”选项卡中“数据审核”节点并将其连接到数据流的恰当位置,点击鼠标右键,在“质量”选项卡下,选择检测方法为平均值的标准差。

      步骤2 结果输出实验结果输出如图所示图中蓝色部分表示输出变量取YES,即客户流失的样本数,可以看出,各个变量上流失客户的取值均不同 内容二:基本描述分析这里分析的目标是对电信客户数据的基本服务、开通月数、免费部分和无线费用之间的相关系数以反映变量之间的相互关系步骤1 建立数据流选择“输出”选项卡中的“统计量”节点步骤2 设置相关参数1) 双击“统计量”节点,进行相应的设置在“检查”框中添加开通月数、基本费用、免费部分和无线费用2) 在“相关”框中添加年龄、收入和家庭人数如图所示3)在“相关设置”中,勾选“按重要性定义相关强度”如图所示计算结果如图所示可以看出,以“基本费用”为例,它与“年龄”和“收入”都有相关性,它们之间简单相关系数虽然为0.401和0.195,但从统计量的角度来看有95%以上的把握认为它们之间是非0相关基本费用”与“家庭人数”呈负弱相关内容三:绘制散点图数值之间变量的相关性可以采用上一个实验,也可以通过散点图来直接观察,此次主要观察基本费用和年龄之间的相关性步骤1 构建数据流选择“图形”选项卡中的“图”节点步骤2 设置相关参数1) 双击“图”节点,选择编辑菜单,进行参数窗口的设置。

      2) 在“X字段”和“Y”字段框中分别选择“基本费用”和“年龄”在“交叠字段”下,选择“颜色”-“流失”,不同颜色表示流失量不同取值的样本点如图所示“图”节点的参数设置窗口输出的结果如图所示内容四:两分类变量相关性的研究两分类变量相关性研究可以从图形分析入手,然后采用数值分析的方法下面采用网状图分析步骤1 设置相关参数选择图形中的网络节点,进入编辑状态,在“字段”下选择“套餐类型”和“流失”设置线值为“绝对值”步骤2 结果输出可以由结果图中得到,其电信客户保持是最好的,结果输出如图所示内容五:变量中重要性分析步骤1 窗口设置选择“模型”选项卡中的“特征选择”节点,将其连接到数据流的恰当位置,点击鼠标右键,选择弹出菜单中的编辑窗口,将“流失”添加到目标选项中,其他的全部添入输入,具体操作如图所示步骤 2 结果输出由结果输出可以看出,开通月数、基本费用、电子支付、年龄、受教育程度、套餐类型、收入以及各种费用等变量对预测用户是否流失很重要,其他的变量则意义不大,结果输出如图所示三、 实验步骤与结果实验步骤和结果见实验内容四、 实验分析与扩展练习实验分析:本次实验通过对数据质量、基本描述、散点图、相关性、重要性五个方面进行内容分析,比较全面地了解了该数据的相关信息,并得到了相应的结果。

      请总结分析以下问题:(1) 针对上述案例,分析保存客户与流失客户的基本费用是否存在显著的差异2) 如何评价数据质量?相关性和重要性有何区别?答:(1)根据分析客户流失的样本数的比例(灰色为流失)然后分析基本费用和流失之间的关系,通过建立统计量和绘制散点图最后比较重要度可以得出结论:保存客户与流失客户的基本费用存在显著性差异(2) 数据质量是保证数据应用的基础,它的评估标准主要包括四个方面,完整性、相关性、一致性、及时性评估数据是否达到预期设定的质量要求,就可以通过这四个方面来进行判断相关性:高质量的数据应该是能充分满足用户使用要求的数据,即数据源和要处理的业务具有很强的联系;重要性:数据有很大价值和影响的性质,能为数据处理提供很多方便2. 扩展练习(1) 针对上述的五个内容,分别更改一些参数,观察是否对结果造成影响答:内容一:更改“数据审核”中的部分参数,结果如下 左边是没有更改,右边是更改后的,该系数更改无明显变化五、结论与讨论(重点) 通过这次实验,我了解到数据分析是数据挖掘中很重要的一部分,数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中和提炼出来,以找出所研究对象的内在规律。

      数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程 分析数据的时候不要盲目,首先要确定你要分析的方向,以更直观的方式表现出来,然后从所得的数据了解这些数据背后所代表的是什么,我们可以以其他方式更好的体现出来吗?怎么数据说话能更直观表明问题?数据分析的步骤:1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.