好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

i弯曲变形3ppt课件.ppt

57页
  • 卖家[上传人]:公****
  • 文档编号:591562614
  • 上传时间:2024-09-18
  • 文档格式:PPT
  • 文档大小:3.15MB
  • / 57 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 4. 4. 梁的变形梁的变形Deformations of BeamsDeformations of Beams 4.1 4.1 弯曲变形的概念弯曲变形的概念x xxy yyo oox xxy yyw(x)w(x)w(x)o oox xxx xxy yyw (x)w (x)w (x)θ (x)θ (x)θ (x)o oox xx挠度以挠度以挠度以挠度以 y y 轴正向为正轴正向为正轴正向为正轴正向为正Concept of deformations for a beamConcept of deformations for a beam(1) 挠度 ( deflection ) x xy yL L梁有两种变形形式梁有两种变形形式梁有两种变形形式梁有两种变形形式挠度函数或挠曲线方程挠度函数或挠曲线方程挠度函数或挠曲线方程挠度函数或挠曲线方程 Acoording to the assumpation of small Acoording to the assumpation of small deformations we can get :deformations we can get :转角以转角以转角以转角以 x x 轴正向逆时针旋转为正轴正向逆时针旋转为正轴正向逆时针旋转为正轴正向逆时针旋转为正(2) 转角 ( slope ) x xy yL LRelation between and :Relation between and :转角函数或转角方程转角函数或转角方程转角函数或转角方程转角函数或转角方程注意注意注意注意: : : : 材料力学所说的梁的变形实质上指的是梁的位移材料力学所说的梁的变形实质上指的是梁的位移材料力学所说的梁的变形实质上指的是梁的位移材料力学所说的梁的变形实质上指的是梁的位移! ! ! !是梁变形的累加效应〔包括梁可能存在的刚体位移)。

      是梁变形的累加效应〔包括梁可能存在的刚体位移)是梁变形的累加效应〔包括梁可能存在的刚体位移)是梁变形的累加效应〔包括梁可能存在的刚体位移) 注意注意注意注意: : : : 材料力学所说的梁的变形实质上指的是梁的位移材料力学所说的梁的变形实质上指的是梁的位移材料力学所说的梁的变形实质上指的是梁的位移材料力学所说的梁的变形实质上指的是梁的位移! ! ! !是梁变形的累加效应〔包括梁可能存在的刚体位移)是梁变形的累加效应〔包括梁可能存在的刚体位移)是梁变形的累加效应〔包括梁可能存在的刚体位移)是梁变形的累加效应〔包括梁可能存在的刚体位移)1 1〕梁存在变形,一般也存在位移〔既挠度和转角)〕梁存在变形,一般也存在位移〔既挠度和转角)〕梁存在变形,一般也存在位移〔既挠度和转角)〕梁存在变形,一般也存在位移〔既挠度和转角) 2 2〕梁存在位移〔既挠度和转角)〕梁存在位移〔既挠度和转角)〕梁存在位移〔既挠度和转角)〕梁存在位移〔既挠度和转角) ,有可能不存在变形有可能不存在变形有可能不存在变形有可能不存在变形 x xxy yyw (x)w (x)w (x)θ (x)θ (x)θ (x)o oox xx4.2 4.2 挠曲线的近似微分方程挠曲线的近似微分方程Approximately differential equation of the deflection curveApproximately differential equation of the deflection curve中性层曲率与弯矩的关系中性层曲率与弯矩的关系中性层曲率与弯矩的关系中性层曲率与弯矩的关系: :曲率计算公式曲率计算公式曲率计算公式曲率计算公式 : :EI EI :抗弯刚度:抗弯刚度 ( bending stiffness ) ( bending stiffness ) Because deformations of the beam is very small , we Because deformations of the beam is very small , we can get :can get :So :So :M(x)<0M(x)<0x xy yM(x)>0M(x)>0x xy y The positive and negative symbol of curvature is just The positive and negative symbol of curvature is just coincident with that of bending moment , so we have coincident with that of bending moment , so we have the result shown follows :the result shown follows :It is called the approximately differential equation of It is called the approximately differential equation of the deflection curve .the deflection curve .挠曲线近似微分方程挠曲线近似微分方程挠曲线近似微分方程挠曲线近似微分方程曲率的正负号与弯矩的正负号一致曲率的正负号与弯矩的正负号一致曲率的正负号与弯矩的正负号一致曲率的正负号与弯矩的正负号一致 4.3 4.3 积分法求梁的变形积分法求梁的变形Using integration method to determine the Using integration method to determine the deformations of a beamdeformations of a beamBasic equation is :Basic equation is :M(x)/EIM(x)/EIM(x)/EIL Lx xSingle functionSingle function(1) M(x)/EI (1) M(x)/EI 在梁中为单一函数在梁中为单一函数 ( a single function in ( a single function in whole beam )whole beam ) L Lx0积分常数积分常数C C和和D D由约束条件确定:由约束条件确定:A AFixed pinFixed pin A AA AMovable pinMovable pinFixed endFixed endSpringSpringAnother barAnother barA Al l A Ak kR RAnother beamAnother beamA A There are two boundary conditions for a beam . There are two boundary conditions for a beam . (2) M(x)/EI (2) M(x)/EI 在梁中是分段函数在梁中是分段函数 ( is not same ( is not same function in one part of the beam from another ) function in one part of the beam from another ) M(x)/EIM(x)/EIx x i b. b. 梁的连续条件梁的连续条件梁的连续条件梁的连续条件(Continuous conditions of the (Continuous conditions of the beam) beam) At the divided points of the beam the deflection and slope At the divided points of the beam the deflection and slope must be continuous , so we can get :must be continuous , so we can get :There are 2n-2 equations .There are 2n-2 equations .( i = 2,3,….n )( i = 2,3,….n )Continuous conditions : 2n-2 Continuous conditions : 2n-2 Boundary conditions : Boundary conditions : 2 2(i=1,2,…n(i=1,2,…n) )在梁的分界点处在梁的分界点处在梁的分界点处在梁的分界点处 , , , , 梁的挠度和转角都应连续梁的挠度和转角都应连续梁的挠度和转角都应连续梁的挠度和转角都应连续 Example : Example : 如图所示简支梁受均布载荷作用,如图所示简支梁受均布载荷作用,如图所示简支梁受均布载荷作用,如图所示简支梁受均布载荷作用,右端由拉杆支承,左端由固定铰支承。

      求梁左右端由拉杆支承,左端由固定铰支承求梁左右端由拉杆支承,左端由固定铰支承求梁左右端由拉杆支承,左端由固定铰支承求梁左端截面的转角以及梁中点的挠度端截面的转角以及梁中点的挠度端截面的转角以及梁中点的挠度端截面的转角以及梁中点的挠度Solve :Solve :(1) Determine the reaction (1) Determine the reaction at fixed pin and the axial at fixed pin and the axial force of the barforce of the bar(2) Determine the function of benging moment in the beam(2) Determine the function of benging moment in the beamR RM(x)M(x)Q(x)Q(x)L LLx xy yL/2 EAL/2 EAq qA AB BC CEIEIR RN N (3) Determine the equation of deflection curve(3) Determine the equation of deflection curve(4) Determine the unknown constants C and D(4) Determine the unknown constants C and Dw(0) = 0w(0) = 0 boundary conditions : D = 0D = 0 So the function of slope and deflection will be :So the function of slope and deflection will be :(5) Determine the slope at end A and (5) Determine the slope at end A and deflection at middle point Cdeflection at middle point C( )( ) ((((1 1)))) 梁的内力和变形与载荷及抗弯刚度之间的梁的内力和变形与载荷及抗弯刚度之间的梁的内力和变形与载荷及抗弯刚度之间的梁的内力和变形与载荷及抗弯刚度之间的关系关系关系关系: :转角转角转角转角集中力集中力集中力集中力 F F均布载荷均布载荷均布载荷均布载荷 q q挠度挠度挠度挠度 弯矩弯矩弯矩弯矩剪力剪力剪力剪力 L L 为梁的特征长度为梁的特征长度. .4.4 梁变形的一些重要特点 L L L3 分钟小练习分钟小练习填空填空:(1) (1) 当梁的直径减小一倍而其它条件不变时当梁的直径减小一倍而其它条件不变时当梁的直径减小一倍而其它条件不变时当梁的直径减小一倍而其它条件不变时: : 最大最大最大最大弯曲正应力是原来的弯曲正应力是原来的弯曲正应力是原来的弯曲正应力是原来的 倍倍倍倍 , , 最大挠度是原来的最大挠度是原来的最大挠度是原来的最大挠度是原来的 倍倍倍倍. . (2) (2) 当梁的长度增大一倍而其它条件不变时当梁的长度增大一倍而其它条件不变时当梁的长度增大一倍而其它条件不变时当梁的长度增大一倍而其它条件不变时: : 最大最大最大最大弯曲正应力是原来的弯曲正应力是原来的弯曲正应力是原来的弯曲正应力是原来的 倍倍倍倍 , , 最大挠度是原来的最大挠度是原来的最大挠度是原来的最大挠度是原来的 倍倍倍倍. . 81628 a aaC CCF FFA AAL LL(2〕刚性地基或平台上的梁a aaC CCB BBA AAL LLq L LLa aaA AAB BBC CC刚性地基或平台上的梁在接触点可简化为:刚性地基或平台上的梁在接触点可简化为:刚性地基或平台上的梁在接触点可简化为:刚性地基或平台上的梁在接触点可简化为:((((1 1〕弯矩为零的固定端。

      〕弯矩为零的固定端〕弯矩为零的固定端〕弯矩为零的固定端2 2〕转角为零的简支端〕转角为零的简支端〕转角为零的简支端〕转角为零的简支端q F FFL+aL+aL+aA AA (3) 对称梁和反对称梁Symmetrical and anti-symmetrical beamsSymmetrical and anti-symmetrical beams1) For a beam , if loadings and supports are symmetrical , 1) For a beam , if loadings and supports are symmetrical , it is called symmetrical beam .it is called symmetrical beam .q a aaL LLL LLP PPA AB BC Cq qL LEIEI对对对对 称称称称 梁梁梁梁 2) For a beam , if loadings and supports are anti-2) For a beam , if loadings and supports are anti-symmetrical , it is called anti-symmetrical beam .symmetrical , it is called anti-symmetrical beam .q a aaa aaL LLL LLm mmL LLL LLP PPP PP反反反反 对对对对 称称称称 梁梁梁梁 For the symmetrical beam , we can get the results at For the symmetrical beam , we can get the results at the middle point of the beam as follows .the middle point of the beam as follows .对称梁对称梁对称梁对称梁: : : :q For the anti-symmetrical beam , we can get the results at For the anti-symmetrical beam , we can get the results at the middle point of the beam as follows .the middle point of the beam as follows .反对称梁反对称梁反对称梁反对称梁: : : :q a aaa aaC C Example : Determine the deflection at point Example : Determine the deflection at point D of the beam shown follows . D of the beam shown follows . q a aaD DA AB BC Ca/2a/2a/2a/2a/2a/2Solve :Solve : Because the the beam is anti-symmetrical , we can get :So the part AC of the beam just like a simple So the part AC of the beam just like a simple supported beam .supported beam .q D DA AC Ca/2a/2a/2a/2a/2a/2( )( ) 4.5 叠加法计算梁的变形Principle of superposition to determine the slope Principle of superposition to determine the slope and deflection of beams and deflection of beams 问题问题:如何计算图示各梁在一些特殊点如何计算图示各梁在一些特殊点如何计算图示各梁在一些特殊点如何计算图示各梁在一些特殊点处的挠度和转角处的挠度和转角处的挠度和转角处的挠度和转角? ?求求求求 A A 点挠度点挠度点挠度点挠度a aaP PPA AAEIEIEIq a aa积分法太麻烦积分法太麻烦 ! 求中点的挠度求中点的挠度求中点的挠度求中点的挠度和和和和 B B 点转角点转角点转角点转角求求求求 A A 点挠度和转角点挠度和转角点挠度和转角点挠度和转角a aaa aaq EIEIEIA AAB BBA AAl/ 2l/ 2l/ 2l/ 2l/ 2l/ 2EIEIEIa aaa/4a/4a/4EIEIEIA AAa/4a/4a/4求求求求 梁中点梁中点梁中点梁中点 A A 点挠度点挠度点挠度点挠度宜采用叠加法求解宜采用叠加法求解宜采用叠加法求解宜采用叠加法求解 叠加原理叠加原理 Principle of superposition Principle of superposition在小变形线弹性条件下在小变形线弹性条件下在小变形线弹性条件下在小变形线弹性条件下, , , ,任何因素引起材任何因素引起材任何因素引起材任何因素引起材料力学问题的内力料力学问题的内力料力学问题的内力料力学问题的内力 应力应力应力应力 变形都是可以变形都是可以变形都是可以变形都是可以叠加的叠加的叠加的叠加的, , , ,这称为叠加原理这称为叠加原理这称为叠加原理这称为叠加原理. . . .叠加法计算梁的变形叠加法计算梁的变形弹性小变形条件下弹性小变形条件下弹性小变形条件下弹性小变形条件下 , , 任何因素引起的任何因素引起的任何因素引起的任何因素引起的梁的变形都是可以叠加的梁的变形都是可以叠加的梁的变形都是可以叠加的梁的变形都是可以叠加的 . . The principle of superposition is often used to The principle of superposition is often used to determine the deflections or slopes at some special determine the deflections or slopes at some special points of the beam . points of the beam . Some results of simple beams will be needed to Some results of simple beams will be needed to determine the deflections or slopes of the beam when determine the deflections or slopes of the beam when using the principle of superposition . using the principle of superposition . 注意注意注意注意: : 叠加法主要用于求梁在某些叠加法主要用于求梁在某些叠加法主要用于求梁在某些叠加法主要用于求梁在某些特殊点处的挠度和转角特殊点处的挠度和转角特殊点处的挠度和转角特殊点处的挠度和转角应用叠加法时应用叠加法时应用叠加法时应用叠加法时 , , 一些简单梁的变形一些简单梁的变形一些简单梁的变形一些简单梁的变形必须要已知必须要已知必须要已知必须要已知 . . 叠加法叠加法叠加法叠加法 ( ( Principle of Principle of superpositiosuperposition )n )m mA AAB BBm mF Fq A AAB BBF FA AAB BBq A AAB BB ((1 1)) 载荷因素:多个载荷引起的梁的变形都是可载荷因素:多个载荷引起的梁的变形都是可以叠加的以叠加的. . a aaa/4a/4a/4EIEIEIA AAa/4a/4a/4Example : Determine the deflection at the middle point Example : Determine the deflection at the middle point A of the beam shown follows .A of the beam shown follows .Solve :Solve :a aaa/4a/4a/4EIEIEIA AAa/4a/4a/4a aaa/4a/4a/4EIEIEIA AAa/4a/4a/4a aaa/4a/4a/4EIEIEIA AAa/4a/4a/4++ a aaa/4a/4a/4EIEIEIA AAa/4a/4a/4a aaa/4a/4a/4EIEIEIA AAa/4a/4a/4a aaEIEIEIA AA= a aaa/4a/4a/4EIEIEIA AAa/4a/4a/4=a aaEIEIEIA AA( ) a aaa/4a/4a/4EIEIEIC CCSolve :Solve :例例例例 如图外伸梁如图外伸梁如图外伸梁如图外伸梁 C C 点的竖向位移为点的竖向位移为点的竖向位移为点的竖向位移为零时零时零时零时, ,求载荷求载荷求载荷求载荷P P 和和和和q q间的关系。

      间的关系间的关系间的关系a aa/4a/4EIEIC Ca/2a/2a/2a/4a/4a/4EIEIEIA AAC CCB BBa/2a/2a/2F FFa aaa/4a/4a/4EIEIEIC CC ((((2 2〕支座移动因素:弹性小变形条件下〕支座移动因素:弹性小变形条件下〕支座移动因素:弹性小变形条件下〕支座移动因素:弹性小变形条件下 , , 由于支座移动引起的梁的位移与载荷因素引起由于支座移动引起的梁的位移与载荷因素引起由于支座移动引起的梁的位移与载荷因素引起由于支座移动引起的梁的位移与载荷因素引起的梁的位移是可以叠加的的梁的位移是可以叠加的的梁的位移是可以叠加的的梁的位移是可以叠加的 . . Example : Determine the deflection at the middle point Example : Determine the deflection at the middle point C of the beam shown follows .C of the beam shown follows .Solve :The original beam can be superposition with two The original beam can be superposition with two beams shown follows . beams shown follows . +B BBF FA AB BC CF FA AB BC CL/2L/2L/2L/2k kA AAA AB BC CB’B’ Then :F FA AB BC CL/2L/2L/2L/2k kA AAF FA AB BC CA AB BC CB’B’( ) L LLx xy yL/2 EAL/2 EAq qA AB BC CEIEIExample :Example :+R RN N( )Solve :Solve :q qA AB BL/2L/2L/2L/2 L LLx xy yL/2 EAL/2 EAq qA AB BC CEIEIExample :Example :+R RN NSolve :Solve :q qA AB BL/2L/2L/2L/2( )( )( ) Example :Solve :Solve :C CR RC C+q qC Cq qC CR Rq qA AB BC CD DL/2L/2L/2L/2a aEIEI( )( ) ((((3 3〕梁变形的累加效应:弹性小变形条件〕梁变形的累加效应:弹性小变形条件〕梁变形的累加效应:弹性小变形条件〕梁变形的累加效应:弹性小变形条件下下下下 , , 由于某段梁的变形引起另一段梁的位移也由于某段梁的变形引起另一段梁的位移也由于某段梁的变形引起另一段梁的位移也由于某段梁的变形引起另一段梁的位移也是可以叠加的是可以叠加的是可以叠加的是可以叠加的 . . a/ 2a/ 2a/ 2a/ 2a/ 2a/ 2A AAB BBw ww1 11w ww2 22θ θθ例例例例 求图示自由端的挠度。

      求图示自由端的挠度求图示自由端的挠度求图示自由端的挠度 )( ) ((((4 4〕叠加法的技巧:〕叠加法的技巧:〕叠加法的技巧:〕叠加法的技巧: ①①①① 载荷的分解与重组载荷的分解与重组载荷的分解与重组载荷的分解与重组 ②②②② 微分载荷积分法微分载荷积分法微分载荷积分法微分载荷积分法 ③③③③ 逐段刚化法逐段刚化法逐段刚化法逐段刚化法 例例例例例例求图示自由端的挠度求图示自由端的挠度l/ 2l/ 2l/ 2l/ 2l/ 2l/ 2EIEIEIq A AAl/ 2l/ 2l/ 2l/ 2l/ 2l/ 2θ θθy 2y 2y 2y 3y 3y 3B BBl/ 2l/ 2l/ 2l/ 2l/ 2l/ 2q 0q 0q 0v 1v 1v 1l llq q q 载荷的分解和重组载荷的分解和重组载荷的分解和重组载荷的分解和重组 例例例例例例求图示自由端的挠度求图示自由端的挠度l/ 2l/ 2l/ 2l/ 2l/ 2l/ 2EIEIEIq A AA微分载荷积分法l/ 2l/ 2l/ 2l/ 2l/ 2l/ 2EIEIEIqdxqdxqdxA AAx xxdxdxdx(向下)(向下)(向下)(向下) 例例例例例例求图示自由端的挠度。

      求图示自由端的挠度l/ 2l/ 2l/ 2l/ 2l/ 2l/ 2EIEIEIq A AAv1v1v1 1 1 1v2v2v2  2 2 2逐段刚化求解 例例例例例例求图示自由端的挠度求图示自由端的挠度l/ 2l/ 2l/ 2l/ 2l/ 2l/ 2EIEIEIq 0q 0q 0A AAq q q v3v3v3v1v1v1  1 1 1v2v2v2  2 2 2逐段刚化求解 Example : Determine the slope of section B . Example : Determine the slope of section B . a aaa aaq EIEIEIA AAB BBSolve :Solve :a aaa aaq/2q/2q/2EIEIEIA AAB BBa aaq/2q/2q/2C CCB BBa aaa aaq/2q/2q/2EIEIEIA AAB BBC CC例题例题: : a aaa aaq/2q/2q/2EIEIEIA AAB BBa aaq/2q/2q/2C CCB BB 例例例例 如图,无限长的梁放置在刚如图,无限长的梁放置在刚如图,无限长的梁放置在刚如图,无限长的梁放置在刚性平台上,梁单位长度重量为性平台上,梁单位长度重量为性平台上,梁单位长度重量为性平台上,梁单位长度重量为 q q,,,,C C 处有作用力处有作用力处有作用力处有作用力 P = qa P = qa,求,求,求,求 C C 处的挠度。

      处的挠度处的挠度处的挠度a aaB BBC CCP PP 梁的变形如图设平台上梁梁的变形如图设平台上梁抬起的长度为抬起的长度为 L L,,a aaC CCP PPA AAL LL 2 2 分钟小练习分钟小练习: : 梁抬起的长度梁抬起的长度 L ? L ? 例例例例 如图,无限长的梁放置在刚如图,无限长的梁放置在刚如图,无限长的梁放置在刚如图,无限长的梁放置在刚性平台上,梁单位长度重量为性平台上,梁单位长度重量为性平台上,梁单位长度重量为性平台上,梁单位长度重量为 q q,,,,C C 处有作用力处有作用力处有作用力处有作用力 P = qa P = qa,求,求,求,求 C C 处的挠度处的挠度处的挠度处的挠度q P PPL+aL+aL+aA AA 梁的力学模型可简化为左方梁的力学模型可简化为左方固定端铰处弯矩为零的悬臂梁固定端铰处弯矩为零的悬臂梁a aaB BBC CCP PP 梁的变形如图设平台上梁梁的变形如图设平台上梁抬起的长度为抬起的长度为 L L,,a aaC CCP PPA AAL LL 例例例例 求求求求 C C 点竖向位移点竖向位移点竖向位移点竖向位移 v v。

      P PPL LLa aaA AAB BBC CCT T T φ φφv2v2v2P PPv1v1v1P PPv3v3v3 5. 5. 5. 梁梁梁梁梁梁 的的的的的的 刚刚刚刚刚刚 度度度度度度Stiffness of beamsStiffness of beams 5.1 梁的刚度条件梁的刚度条件 ----- Allowed maximum slope----- Allowed maximum slopeStiffness criteria of a beamStiffness criteria of a beam----- Allowed maximum deflection----- Allowed maximum deflectionIn engineering the allowed maximum deflection was ofen In engineering the allowed maximum deflection was ofen gived by the form as follows :gived by the form as follows :容容容容 许许许许 转转转转 角角角角 容容容容 许许许许 挠挠挠挠 度度度度 5.2 刚度条件的应用刚度条件的应用 (Applications of stiffness criteria )(1) (1) 校核刚度校核刚度校核刚度校核刚度 (To examine the stiffness of a (To examine the stiffness of a beam)beam)(2) (2) 计算许可载荷计算许可载荷计算许可载荷计算许可载荷 (To determine the (To determine the maximum external forces) maximum external forces) (3) (3) 计算许可截面尺寸计算许可截面尺寸计算许可截面尺寸计算许可截面尺寸 ( To determine the size ( To determine the size of cross section)of cross section) P P PL LLB BBA AAExample : Determine the maxium laoding when the Example : Determine the maxium laoding when the maxium deflection of the beam is not over L/300 . maxium deflection of the beam is not over L/300 . P P PL LLB BBA AAP P PL LLB BBA AASolve :Solve :(1) Determine the reactions (1) Determine the reactions (2) Determine the maxium laoding (2) Determine the maxium laoding P P PL LLB BBA AAAccording to the stiffness criteria we can get :According to the stiffness criteria we can get : 本节内容结束本节内容结束 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.