好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

第二节期权定价模型.ppt

65页
  • 卖家[上传人]:飞***
  • 文档编号:4057467
  • 上传时间:2017-08-06
  • 文档格式:PPT
  • 文档大小:547KB
  • / 65 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第二节 金融期权的定价模型,一、金融期权价格构成(一)金融期权的内在价值 1、含义:期权的内在价值,即履约的价值,指期权合约本身所具有的价值,也是期权的买方立即执行期权能获得的收益 期权的内在价值取决于协定价格与标的物市场价格的关系 期权的内在价值不会小于零 根据内在价值,期权可分为实值、虚值和平值三种看涨期权的内在价值 (T) = max[0,S(T)-K]看跌期权的内在价值P(T) = max[K-S(T),0],2、内在价值的计算,(二)金融期权的时间价值,1、含义 期权的时间价值,即外在价值,指期权购买者为购买期权而实际付出的期权费超过该期权的内在价值的那部分价值2、时间价值=期权价格-内在价值 The time value represents the investors' beliefs that they can make more money by selling or exercising the option at some future date.,(三)期权价格的有关性质,性质 1:在期权到期日,期权价格等于其内在价值(时间价值为0)。

       性质 2:在期权到期日之前,美式期权价格大于或等于其内在价值性质 3:对于具有相同标的资产和在相同执行价格的两个期权,距到期日较长的期权,其价格较高. 性质 4:对于具有相同标的资产和在相同到期日的两个看涨期权,执行价格越小的期权,其价格较高; 对于具有相同标的资产和在相同到期日的两个看跌期权,执行价格越高的期权,其价格较高;,(三)期权价格的有关性质,性质 5:看涨期权的价格,不会高于标的资产的价格;If the premium of the call option is greater than the price of its underlying asset:Today: buy the asset, write the call and receive $(C-S).If the call is exercised deliver the stock and get $E.If it not exercised you keep both $(C-S) and the underlying asset. 性质 6:看跌期权的价格,不会高于执行价格;,(四)影响期权价格的主要因素,1、协定价格与市场价格及两者的关系 (1)决定期权的内在价值 (2)决定期权的时间价值 协定价格与市场价格差距越大,时间价值越小, 协定价格与市场价格差距越小,时间价值越大, 当期权处于平值时,时间价值最大。

      2、权利期间(期权剩余的有效时间)期权期间越长,套期保值时间越长,期权时间价值越大随着期权期间缩短,期权时间价值的增幅是递减的3、标的资产的收益 标的资产收益率越高,看涨期权价格越低,看跌期权价格越高4、标的资产价格的波动性 标的资产价格波动性越大,期权价格越高5、利率 利率对看涨期权价格有正向影响,利率对看跌期权价格有负向影响,各因素对期权价格的影响,其中:+为期权价格上升 -为期权价格下降,看涨期权的价格,,,,,X,45°,内在价值,期权价格,时间价值,,,,S,0,C,看跌期权的价格,,,X,内在价值,期权价格,时间价值,S,0,,,,,,,,P,期权时间价值与权利期间的关系,,,,,,,,,6 5 4 3 2 1 0 权利期间,时间价值,,,,,,,,,,,,二、看涨——看跌期权平价关系,(一)假设条件看涨、看跌期权具有相同的执行价格和相同的到期日,并且都是欧式期权二)平价关系 1、无收益资产的平价关系 构造如下两个组合: Portfolio A: 一份欧式看涨期权的多头和 现金。

      Portfolio B:一份欧式看跌期权的多头和一单位标的资产在 T,组合A 的价值为:组合B的价值为: 因此,在t, 两组合的价值应相等,,,,(二)平价关系,2、有固定收益资产的平价关系   Where D is the PRESENT VALUE of the dividends paid over the entire life of the option.That is, we substitute (S - D) for S.,,(二)平价关系,3、期货期权的平价关系 构造如下两个组合: Portfolio A: 一份欧式期货看涨期权的多头和 现金Portfolio B:一份欧式期货看跌期权的多头和一份期货合约和 现金在 T,组合A 的价值为:组合B的价值为: 因此,在t, 两组合的价值应相等,,,,,(二)平价关系,4、美式期权的平价关系(1)标的资产无收益的平价关系  (2)标的资产有收益的平价关系,,,三、期权定价模型,(一)二项式定价模型与期货定价相同,我们可以利用无套利定价原理对期权定价方法是:构造一个证券组合,其赢利与期权正好相同(现金流复制方法)。

      Black and Scholes (1973) 正是应用这种方法得出了著名的期权定价公式二项式定价模型,尽管简单,但原理与Black and Scholes公式是相同的,1、实例,假设当前的无风险利率为20%, 股票当前的价格为60$,到时期末,股票价格要么下降到30$或上升到90 $. 90 60 30 到时期末,执行价格为60$的期权的价值要么是0 或30. 30 C 0 Cu = max [(u·s - k),o] Cd = max [(d·s - k),o],,,,,1、实例,设我们购买0.5股股票,并且从银行借入 12.50 $.  则有: 30 = 0.5 ×90 - 12.5 × (1+0.2) 0.5 × 60 -12.5 = 17.5 0 = 0.5 × 30 - 12.5 × (1+0.2) 可见,这个组合与看涨期权的盈亏完全相同,因此,看涨期权的价值与这个组合的价值相同,为$17.50. (C = 17.5) 如果期权的交易价格为$18.50 ,情况如何?此时,将出现套利机会。

      1、实例,构造下列组合:卖出一份看涨期权: 买入由0.5份股票和$12.50现金组成的组合(由股票和债券的组合复制看涨期权)在T时刻,两个组合的收益相同,在时间t,投资者的净收益为$1.00(18.5-17.5)问题:如果期权目前的交易价为$16.50 ,那么,你的套利组合应如何构建?,1、实例,假设∆ 份股票+ L 现金可以复制看涨期权当股票价格上升到90 $,则: 90 × ∆ + 1.2 L = 30 当股票价格下降到30 $,则: 30 × ∆+ 1.2 L = 0 这样:∆ = 0.5, L= -12.5 组合与看涨期权对股票价格的敏感性相同这个敏感性称为套期保值比率或称为看涨期权的∆系数: ∆ = ∆C/∆S = (30-0) / (90-30) = 0.5 复制组合应包括∆份股票、借入 L 现金,2、一般的二项式定价模型,在实际中,股票的价格不仅是两个值,可能有多个值我们可以通过缩短每一步的时间周期,采取多步骤的方法,构造二叉树模型的方法来模拟股票的多个值为求解多阶段的二叉树模型,我们只要重复求解单阶段的二叉树模型即可,因此,我们首先要得出一般的单阶段二叉树模型1)一般的单阶段的二叉树模型,符号设: S:标的物现行价格 u:标的物价格可能上涨倍率(u 1) d:标的物价格可能下降倍率(d 1) R = 1 +单周期的无风险利率 为了防止出现套利机会,要求: d < R < u 当股票价格上升时, Su = u × S ; 当股票价格下降时, Sd = d × S 在到期日,期权的盈亏为:如果股票价格上升:Cu = max [(u·s-k),o]如果股票价格下降: Cd = max [(d·s-k),o],(1)一般的单周期的二叉数模型,构造下列组合:买入∆ 份股票+ 以无风险利率借入L 现金以复制看涨期权,则: ∆ u × S + R × L = Cu ∆ d × S + R × L = Cd 解之,得: ∆ = (Cu - Cd)/ (u × S - d × S) L = - (dCu - u Cd) / [R × (u-d)] 注意:对看涨期权来说,L 总是负值(总是借入资金)。

      问题:导出复制看跌期权组合的计算公式Risk-Neutral Probability,记: C = ∆ S + L C = 1/R × (q × Cu + (1-q) × Cd) 如果q是股票价格上涨的概率,则看涨期权的价格是期权未来价值的期望值的贴现值 衍生证券的风险中性定价 如果每个人都是风险中性的,股票的期望收益率将等于无风险收益率R. 在风险中性的世界中,股票上升的概率为q(注意在实际中,股票上升的概率为p,投资者是风险厌恶的 )看涨期权的价格是期权未来价值的期望值的贴现值: C = 1/R × {q × Cu + (1-q) × Cd} 一般公式为:Derivative Price = EQ[(1/R)(T-t) × Payoff ] 此公式说明衍生证券的价格是其盈亏贴现值的期望值 (风险中性的世界中),,,(2)二期间二叉树模型(价格关系图),S,,,Su,Sd,,,,,Su2,Sud,Sd2,Cd,C,Cu,,,,,,,Cu2,Cd2,Cud,(2)两阶段二叉树模型,根据单阶段模型: Cu = (q × Cuu + (1-q) × Cud) / R Cd = (q × Cud + (1-q) × Cdd) / R 当得到Cu 、 Cd ,再使用单阶段模型,得:C = 1/R2 × { q2 × Cuu + 2 × (1- q) × q × Cud +(1-q)2 × Cdd } 同样,这也是一般模型的特例:Derivative Price = EQ[(1/R)(T-t) × Payoff ],标的资产价格变化及风险中性概率的估计,在二叉树模型中,确定u, d, and q是关键,这里应用风险中性定价法估计这些数值。

      在风险中性世界中:所有可交易证券的期望收益都是无风险利率;未来现金流可以用期望值按无风险利率贴现假设股票的价格遵从几何布朗运动,记:r为连续复利的无风险收益率,S为期初的证券价格,则在很小 ∆t末证券价格的期望值为 :对一个价格遵从几何布朗运动的股票来说,在∆t 内证券价格变化的方差为 ( )σ为股票价格以年计的波动标准差根据方差的定义,有:,,假设d=1/u(Cox, Ross, Rubinstein的条件),解上面的三式,得u, d, and q的估计值为:,,,,,,易变性对期权定价的影响,看涨期权的价格是收益贴现值的期望,当标的资产的易变性增加时,标的资产价格出现极端值的概率增加,那么看涨期权处于实值或虚值的可能性增加,因此,波动性越高,盈亏贴现的期望值就越高,看涨期权的价格就越高 What about a put option?,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.