
第10章 感应电机的动态分析与矢量控制.ppt
147页第十章 感应电机的动态分析与矢量控制第一节 三相坐标系中感应电机的动态方程第二节 坐标变换与空间矢量第三节 两相坐标系中感应电机的动态数学模型第四节 三相感应电动机起动过程的动态分析第五节 感应电动机的矢量控制第一节 三相坐标系中感应电机的动态方程建立三相感应电机动态数学模型时的假设:Ø 忽略空间谐波,各绕组产生的磁动势在空间上正弦分布;Ø 不考虑磁路饱和,并忽略铁耗,各绕组的自感和互感均与 绕组内的电流大小无关;Ø 定、转子表面光滑,不计齿槽的影响;Ø 不考虑频率和温度变化对绕组电阻的影响三相感应电机物理模型三相感应电机物理模型如图10-1所示正方向规定规定各绕组电压、电流、磁链等的正方向符合电动机惯例 第一节 三相坐标系中感应电机的动态方程一、电压方程二、磁链方程三、转矩方程和机械运动方程四、三相坐标系中感应电机的动态数学模型三相坐标系中感应电机的动态方程由电压方程、磁链方程、转矩方程和机械运动方程组成 一、电压方程三相转子绕组的电压方程为一、电压方程三相定子绕组的电压平衡方程为 (10-1) (10-2) 一、电压方程或简写成将电压方程写成矩阵形式,并以微分算子p代替符号d /dt有 (10-3) (10-3a) 二、磁链方程或写成二、磁链方程每个绕组的磁链都是它本身的自感磁链和其它绕组 对它的互感磁链之和,因此六个绕组的磁链可表达为(10-4) (10-4a) 二、磁链方程转子各绕组的自感和互感为 定子各绕组的自感和互感为 (10-8) (10-9) (10-10) (10-11) 定、转子绕组之间的互感为 (10-12) (10-13) (10-14) 二、磁链方程式中 将式(10-8)~(10-14)代入式(10-4),可得完 整的磁链方程 。
常写成分块矩阵的形式 (10-15) (10-16) 二、磁链方程值得注意的是,Lrs和Lsr两个分块矩阵互为转置,且均 与转子位置角有关,它们的元素都是变参数,这是系统 非线性的一个根源 (10-17) (10-18) 二、磁链方程其中,Ldi /dt 项是由于电流变化引起的感应电动势 ,(∂L / ∂)i 项是由于定、转子相对位置变化产生的与 转速成正比的旋转电动势 (10-19) 如果把磁链方程代入电压方程,可以得到展开后的电 压方程三、转矩方程和机械运动方程考虑到机械位移角m=/pn,pn为电机的极对数,则有三、转矩方程和机械运动方程根据机电能量转换原理,若整个电机内的磁共能为 WΦ,则电磁转矩Te应当等于磁共能对转子机械角位移m 的偏导数(电流恒定时)性电感的条件下,磁共能 为 (10-20) (10-21) 三、转矩方程和机械运动方程代入式(10-21),得又考虑到 (10-22) (10-22a) 将式(10-18)代入式(10-22)并展开,得系统的机械运动方程为 (10-23) 四、三相坐标系中感应电机的动态数学模型这是一组变系数非线性微分方程,在用数值法求解 时常写成状态方程的标准形式 四、三相坐标系中感应电机的动态数学模型汇总上述电压方程(10-19)、磁链方程(10-15)、 运动方程(10-23)和转矩方程(10-21)或(10-22), 再结合角速度方程=d/dt,即得到三相坐标系中感应电 机的动态数学模型,用微分方程表示为 (10-24) 四、三相坐标系中感应电机的动态数学模型式中,x和 分别为状态向量及其对时间的导数;v为输 入向量;A为系统矩阵;B为控制矩阵。
写成矩阵形式时为(10-25) (10-26) 四、三相坐标系中感应电机的动态数学模型(10-27) (10-28) 第二节 坐标变换与空间矢量一、坐标变换基础Ø 1.线性变换与功率不变约束Ø 2.坐标变换与电机绕组等效二、空间矢量三、坐标变换Ø 1. 三相静止坐标系与两相任意旋转坐标系的坐标变换Ø 2.常用坐标系和坐标变换Ø 3.满足功率不变约束的坐标变换一、坐标变换基础一、坐标变换基础所谓坐标变换就是将方程中的一组变量用一组新的 变量来代替,或者说用新的坐标系去替换原来的坐标系 ,以便使分析、计算得以简化若新、旧变量之间为线 性关系,则变换为线性变换,电机分析中用到的坐标变 换都是线性变换以前述感应电机动态方程为例,在转速恒定的情况 下,通过适当的坐标变换,可以将原来坐标系下含有时 变系数的电感矩阵变成常数阵,相应的电压方程变成常 系数微分方程,使解析求解得以实现一、坐标变换基础1.线性变换与功率不变约束设有一线性电路,其电压方程的矩阵形式为 (10-29) 现进行坐标变换,将原有的电压u、电流i变换成新的 电压u和电流i,设电压变换矩阵为Cu,电流变换矩阵为 Ci,理论上电压和电流可以采用不同的变换矩阵,即Cu和 Ci可以不同,但在电机分析中,通常取Cu和Ci为同一矩阵 C,于是有 (10-30) (10-31) 一、坐标变换基础为使原变量与新变量之间存在单值对应关系,变换矩 阵C必须是方阵,且其行列式的值必须不等于零,这样逆 矩阵C-1才能存在。
根据式(10-29)~(10-31),用新变量表示时的 电压方程为 (10-33) (10-32) 式中,z为变换后的阻抗矩阵矩阵C、u、i中的元素可以是实数(实变量),也 可以是复数(复变量),下面仅以它们为实数(实变量 )为例来讨论坐标变换的功率不变约束 一、坐标变换基础变换前输入(或输出)电路的瞬时功率为 变换后的瞬时功率为(10-35) (10-34) 若要保证变换前后功率不变,则应有 将式(10-30)~(10-31)代入式(10-34),可得(10-36) (10-37) 一、坐标变换基础欲满足式(10-36),必须使上式中其中,I 为单位矩阵即应有(10-39) (10-38) 满足式(10-39)的变换称为正交变换需要说明的是,坐标变换不一定要满足功率不变约 束若变换前后功率不守恒,只需在计算功率和电磁转 矩时引入相应的系数进行修正即可目前广泛应用的派 克(Park)变换就是功率不守恒的坐标变换一、坐标变换基础2. 坐标变换与电机绕组等效从物理意义上看,电机分析中的坐标变换可以看作 电机绕组的等效变换进行坐标变换的目的是使方程简 化,三相坐标系中电机动态方程复杂的主要原因在于: 由于三相绕组非正交,三相定子绕组之间及三相转子绕 组之间存在复杂的耦合关系;同时由于定、转子绕组有 相对运动,使定、转子绕组间的互感随着时间变化。
为 了简化方程,可以设想用两相正交绕组代替(或等效) 三相定、转子绕组,这样就可以消除定子绕组之间及转 子绕组之间的互感,如果进一步使定、转子绕组相对静 止,例如将转子绕组用静止绕组等效,则定、转子绕组 间的互感将变为常数,从而使微分方程大为简化 一、坐标变换基础在感应电机中,最重要的就是旋转磁场的产生以 定子绕组为例,不管绕组的具体结构和参数如何,只要 其产生磁场的空间分布、转速、转向相同,它与转子的 相互作用情况就相同,即在转子中产生感应电动势、电 流及电磁转矩的情况相同,也就是说从转子侧只能看到 定子绕组产生的磁场,而看不到产生磁场的定子绕组本 身对转子绕组有同样的结论,从定子侧只能看到转子 绕组产生的磁场,而看不到转子绕组的具体结构因此 ,从产生磁场的角度看,不同结构形式或参数的绕组是 可以相互等效的,在感应电机分析中通常将笼型转子等 效成绕线转子进行分析、计算也正是基于这一点 一、坐标变换基础u三相静止绕组、两相静止绕组和两相旋转绕组间的等效 可见,以产生同样的旋转磁动势为准则,三相静止绕 组、两相静止绕组和两相旋转绕组可以彼此等效从坐标 变换的角度看,就是三相静止坐标系下的iA、iB、iC和两相 静止坐标系下的i、i以及两相旋转坐标系下的id、iq可以相 互等效,它们之间准确的等效关系,就是坐标变换关系。
图10-2 交流电机的绕组等效 二、空间矢量二、空间矢量空间矢量的概念在交流电机分析与控制中具有非常 重要的作用将各相的电压、电流、磁链等电磁量用空 间矢量表达,可以使三相感应电机的动态方程表达更简 洁,为电机的分析与控制带来方便,并有助于对交流电 机的矢量控制、直接转矩控制、PWM方法中电压空间矢 量调制(SVPWM)等问题的理解,特别是利用空间矢量 的概念可以方便地确定不同坐标系间的变换系数,即变 换矩阵C,实现不同坐标系间的坐标变换二、空间矢量u 空间矢量的基本概念我们知道,在空间按正弦规律分布的物理量可以用 空间矢量表示,并按矢量运算法则进行运算交流电机 中,若某相绕组x通以电流ix,在忽略空间谐波的条件下 ,该相绕组产生的磁动势在空间按正弦分布,可用空间 矢量Fx表示,矢量的长度表示基波磁动势的幅值Fx,矢 量所在的位置和方向表示磁动势正波幅所在的位置和方 向对单相绕组而言,由于其基波磁动势幅值位置固定 在绕组轴线上,故相应的矢量Fx在矢量图中的位置固定 不变,始终在绕组轴线上,只是矢量的长度随时间变化 ,方向时而正,时而负二、空间矢量在三相交流电机中,定子为三相对称绕组,其轴线分 别为A、B、C,在空间互差120,若绕组电流分别为iA 、iB、iC,它们产生的基波磁动势用空间矢量表示分别为 FA、FB、FC,如图10-3所示,将三个磁动势矢量按矢量 运算法则相加,可以得到一个新矢量F,有 (10-40) F代表了三相绕组的基波合成磁动势,F的长度对应 于三相合成磁动势的幅值F,F的空间位置与三相基波合 成磁动势幅值在空间的位置一致。
考虑到交流绕组基波磁 动势幅值Fx与电流ix之间的关系为 二、空间矢量式(10-43)表明,虽然三相电流iA、iB、iC不是在 空间按正弦规律分布的空间正弦量,而是时间变量,它 们也可以用位于各相绕组轴线上长度等于该相电流瞬时 值的空间矢量表示,并按矢量运算法则运算 (10-41) 式中则式(10-40)可以写成 式中(10-42) (10-43) 二、空间矢量从物理意义上看,电流矢量iA、iB、iC分别代表了各 相电流产生的磁动势矢量FA、FB、FC,相应地其合成矢 量i代表的是三相合成磁动势F,i的空间位置对应于合 成磁动势基波幅值的空间位置,i的长度i与合成磁动势 的幅值F成正比由于合成磁动势F综合反映了三相绕组的磁动势FA、 FB、FC,由此不难理解,电流合成矢量i可以综合反映三 相电流iA、iB、iC的瞬时值,因此,我们可以以合成矢量 i为基础,通过引入系数k,定义一个新的电流矢量i=ki ,称为电流综合空间矢量,简称电流综合矢量或电流空 间矢量系数k可以取不同的值,相应地综合矢量有不同 的定义方法二、空间矢量ui在A、B、C轴线上的投影 按照矢量运算法则,i在A相绕组轴线的投影iA应为 iA、iB、iC三个矢量在A轴投影的代数和,即 (10-44) 式中,i0称为零轴分量或零序分量(10-45) 同理可得i在B、C轴的投影分别为 二、空间矢量由式(10-44)~(10-47)可知,若三相绕组为中 性点隔离的Y联接,则iA+iB+iC=0,i0=0,i在三相绕组 轴线的投影分别为3iA/2、3iB/2、3iC/2,比各绕组的实 际电流大了3/2倍,鉴于此,为了方便,在三相系统中常 将综合矢量定义中的系数k取为2/3,即有(10-46) (10-47) (10-48) 二、空间矢量这样,在iA+iB+iC=0的前提下,i在三相绕组轴线的 投影即为iA、iB、iC。
若iA+iB+iC≠0,则i在三相绕组轴线 的投影iA、iB、iC分别为扣除零轴分量后的三相电流瞬 时值,即有 (10-49) 式(10-49)实际上意味着综合矢量i及合成矢量i中 不含有零轴分量的信息从物理概念上讲,零轴分量是三相电流中的零序分量 ,在三相对称系统中,零序电流不产生合成气隙磁动势而从数学的角度看,确定综合矢量i只需要两个独立 变量,故不可能与三个独立变量iA、iB、iC 建立一一对应 的关系。
