
18光的干涉习题思考题的解答.doc
6页习题18-1.杨氏双缝的间距为,距离屏幕为,求:(1)若第一到第四明纹距离为,求入射光波长2)若入射光的波长为,求相邻两明纹的间距解:(1)根据条纹间距的公式:所以波长为:(2)若入射光的波长为,相邻两明纹的间距:18-2.图示为用双缝干涉来测定空气折射率的装置实验前,在长度为的两个相同密封玻璃管内都充以一大气压的空气现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为的干涉条纹移过条计算空气的折射率. 解:(1)当上面的空气被抽去,它的光程减小,所以它将通过增加路程来弥补,所以条纹向下移动 (2)当上管中空气完全抽到真空,发现屏上波长为的干涉条纹移过条可列出:解得: 18-3.在图示的光路中,为光源,透镜、的焦距都为, 求(1)图中光线与光线的光程差为多少?2)若光线路径中有长为, 折射率为的玻璃, 那么该光线与的光程差为多少?解:(1)图中光线与光线的几何路程相同,介质相同,所以SaF与光线SoF光程差为02)若光线路径中有长为, 折射率为的玻璃, 那么光程差为几何路程差与介质折射率差的乘积,即 18-4.在玻璃板(折射率为)上有一层油膜(折射率为)。
已知对于波长为和的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度解:油膜上、下两表面反射光的光程差为2 ne,由反射相消条件有2ne=(2k+1)λ/2=(k+1/2)λ (k=0,1,2,…) ①当λ1=5000时,有 2ne=(k1+1/2)λ1=k1λ1+2500 ②当λ2=7000时,有 2ne=(k2+1/2)λ2=k2λ2+3500 ③因λ2>λ1,所以k2<k1;又因为λ1与λ2之间不存在λ3满足 2ne=(k3+1/2)λ3式即不存在 k2<k3<k1的情形,所以k2、k1应为连续整数,即 k2=k1-1 ④ 由②、③、④式可得:k1=(k2λ2+1000)/λ1=(7k2+1)/5=[7(k1-1)+1]/5得 k1=3 k2=k1-1=2可由②式求得油膜的厚度为 e=(k1λ1+2500)/(2n)=6731 18-5.一块厚的折射率为的透明膜片设以波长介于的可见光.垂直入射,求反射光中哪些波长的光最强?解:由反射干涉相长公式有2ne+λ/2=kλ (k=1,2,…)得 λ=4ne/(2k-1)=(4×1.5×12000)/(2k-1)= 72000/(2k-1) k=6, λ=6550 ;k=7, λ=5540 ;k=8, λ=4800 ;k=9, λ=4240 ;18-6.用的光垂直入射到楔形薄透明片上,形成等厚条纹,已知膜片的折射率为,等厚条纹相邻纹间距为,求楔形面间的夹角.解: 等厚条纹相邻纹间距为:所以18-7.人造水晶珏钻戒是用玻璃(折射率为)做材料,表面镀上一氧化硅(折射率为)以增强反射。
要增强垂直入射光的反射,求镀膜厚度解:由反射干涉相长公式有2ne+λ/2=kλ (k=1,2,…) 当k=1时,为膜的最小厚度得 18-8.由两平玻璃板构成的一密封空气劈尖,在单色光照射下,形成条暗纹的等厚干涉,若将劈尖中的空气抽空,则留下条暗纹求空气的折射率解: ① ②由①/②得 18-9.用钠灯()观察牛顿环,看到第条暗环的半径为,第条暗环半径,求所用平凸透镜的曲率半径解:由牛顿环暗环公式 r= 据题意有 r=; r= 所以:k=4,代入上式,可得:R=6.79m18-10.当把折射率为的薄膜放入迈克尔逊干涉仪的一臂时,如果产生了7.0条条纹的移动,求薄膜的厚度已知钠光的波长为).解: 设插入薄膜的厚度为d,则相应光程差变化为2(n-1)d=ΔNλ∴ d=(ΔNλ)/(2(n-1))= (7×5893×10-10)/(2(1.4-1))=5.154×10-6 m思考题18-1在劈尖的干涉实验中,相邻明纹的间距___________(填相等或不等),当劈尖的角度增加时,相邻明纹的间距离将______________(填增加或减小),当劈尖内介质的折射率增加时,相邻明纹的间距离将______________(填增加或减小)。
答:根据相邻条纹的间距: 条纹间距相等;当劈尖的角度增加时,相邻明纹的间距离将减小当劈尖内介质的折射率增加时,相邻明纹的间距离将减小18-2.图示为一干涉膨胀仪示意图,上下两平行玻璃板用一对热膨胀系数极小的石英柱支撑着,被测样品在两玻璃板之间, 样品上表面与玻璃板下表面间形成一空气劈尖, 在以波长为的单色光照射下,可以看到平行的等厚干涉条纹当W受热膨胀时,条纹将(A)条纹变密,向右靠拢;(B)条纹变疏,向上展开;(C)条纹疏密不变,向右平移;(D)条纹疏密不变,向左平移 ; 答:根据相邻条纹的间距: ,只要劈尖角不变,间距不变由于W受热膨胀时,厚度变化,所以当厚度向左平移,则相应的条纹也向左平移选择(D) 18-3.如图所示,在一块光学平玻璃片上,端正地放一锥顶角很大的圆锥形平凸透镜,在、间形成劈尖角很小的空气薄层当波长为的单色平行光垂直地射向平凸透镜时,可以观察到在透镜锥面上出现干涉条纹。
1)画出于涉条坟的大致分布并说明其主要特征;(2)计算明暗条纹的位置;(3)若平凸透镜稍向左倾斜,干涉条纹有何变化?用图表示答:(1)图略,分析:这是一个牛顿环和劈尖的综合体,所以它的形状类似于牛顿环,也属于等厚干涉2)计算明暗条纹的位置;明条纹: 暗条纹:(3)若平凸透镜稍向左倾斜,干涉条纹将不再是对称的圆环,而是左密右疏的类圆环18-4.若待测透镜的表面已确定是球面,可用观察等厚条纹半径变化的方法来确定透镜球面半径比标准样规所要求的半径是大还是小如图,若轻轻地从上面往下按样规,则图__________中的条纹半径将缩小,而图_________中的条纹半径将增大答:设工件为L,标准样规为G若待测工件表面合格,则L与G之间无间隙,也就没有光圈出现如果L的曲率R太小(如图b),则L与G的光圈很多,轻压后中心仍然为暗斑,但条纹半径要减小;如果L的曲率R太大(如图a),则L与G的光圈除边缘接触,中间部分形成空气膜,轻压后中心斑点明暗交替变化,而且所有光圈向外扩展18-5.图为检查块规的装置,为标准块规,为上端面待测的块规,用波长为的平行光垂直照射,测得平晶与块规之间空气劈尖的干涉条纹如图所示,对于与和的条纹间距分别为和,且。
若将转过,两侧条纹均比原来密1)判断并在图中画出规上端面的形貌示意图;(2)求规左、右侧与的高度差G0G答:(1)根据相邻条纹的间距: 对于和的条纹间距分别为和,,可知将转过,两侧条纹均比原来密,即角度变大了,所以图中G的形状为:(2)求规左、右侧与的高度差 18-6.牛顿环装置中平凸透镜与平板玻璃间留有一厚度为的气隙,若已知观测所用的单色光波长为,平凸透镜的曲率半径为1)试导出级明条纹和暗条纹的公式;(2)若调节平凸透镜与平板玻璃靠近,试述此过程中牛顿环将如何变化?(3)试判别在调节过程中,在离开中心处的牛顿环某干涉条纹宽度与的厚度有无关系?叙述简明理由,并算出在该处的条纹宽度答:(1)与牛顿环计算相似:明条纹: (k=1,2,…)暗条纹: (k=1,2,…)(2)若调节平凸透镜与平板玻璃靠近,则厚度向边缘走动,根据等厚条纹的定义,相应的条纹也要向边缘移动,即条纹扩展 (3)在调节过程中,在离开中心处的牛顿环某干涉条纹宽度与的厚度有关系根据 比如暗环半径: 那么由于平方根的存在,所以e0不能抵消,对条纹宽度产生影响。
18-7.登月宇航员声称在月球上唯独能够用肉眼分辨地球上的人工建筑是中国的长城你依据什么可以判断这句话是否真的?需要哪些数据?(略)。












