好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

非编码RNA的分类及其功能总结(共13页).docx

13页
  • 卖家[上传人]:des****85
  • 文档编号:217594351
  • 上传时间:2021-12-03
  • 文档格式:DOCX
  • 文档大小:1.25MB
  • / 13 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精选优质文档-----倾情为你奉上1. 非编码RNA的分类及概念1.1 分类非编码RNA(non-coding RNA)是指转录组中不翻译为蛋白质的RNA分子包括相对分子量较小的 核内小分子RNA(small nuclear RNA,snRNA)、核仁小分子RNA(small nucleolar RNAs,snoRNA)、微RNA(microRNA,miRNA)、piwi-interacting RNA(piRNA)干扰小RNA(Small interfering RNA,siRNA)以及相对分子量较大的 长非编码RNA(long non-coding RNA,lncRNA)等1.2 概念:snRNA:核内小分子RNA(small nuclear RNA),它是真核生物过程中 体(spliceosome)的主要成分,参与mRNA前体的加工过程snoRNA:核仁小分子RNA(small nucleolar RNAs),它在核糖体RNA 的生物合成中发挥作用,另外还能够指导snRNA、tRNA 和mRNA 的转录后修饰miRNAs:微小RNA(microRNAs),是一类由内源基因编码的长度约为22 个核苷酸的非编码单链RNA 分子,通过与靶标mRNA的3 端非翻译区(3-untranslated region,3-UTR)特异性结合,从而引起靶标mRNA分子的降解或翻译抑制,在动植物中参与转录后基因表达调控。

      piRNAs(Piwi-interactingRNA):piRNA基因是一类长度为24〜32 nt的的单链小RNA,有很强的正义链和反义链专一性,其5 端第一个核苷酸有尿嘧啶倾向性,3 端被2-O-甲基化修饰,这类末端修饰可防止成熟体piRNA基因降解.piRNA主要与PIWI亚家族成员Piwi蛋白或AGO3蛋白质结合而发挥作用siRNA :干扰小RNA(Small interfering RNA),是一种小RNA分子,由Dicer酶加工而成双链RNA经酶切后会形成很多小片段,siRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默lncRNA:长链非编码RNA(Long non-coding RNA),lncRNA是长度大于 200 个核苷酸的非编码 RNA研究表明, lncRNA 在剂量补偿效应、表观遗传调控、细胞周期调控和细胞分化调控等众多生命活动中发挥重要作用,成为遗传学研究热点miRNA和siRNA的区别主要有两点:(1)miRNA是内源性的,是生物体基因的表达产物;siRNA是外源性的,来源于病毒感染、转座子或转基因靶点2)miRNA是由不完整的发卡状双链RNA,经Drosha和Dicer酶加工而成;siRNA是由完全互补的长双链RNA,经Dicer酶剪切而成。

      图:莫小燕等,非编码RNA在肿瘤细胞糖代谢中的调控作用1.3 siRNA、miRNA及piRNA的生物合成 [3]a: (人类)siRNA来源于长的双链RNA分子,经Dicer酶剪切为21-25nt的双链RNA片段,Dicer酶和dsRNA结合蛋白将siRNA二聚体装载至Argonaute 蛋白(AGO2)而发挥作用;b:(人类)miRNA由内源性的生物体基因产生含有发卡结构的65-70nt 长的pri-miRNA,该发卡结构在细胞核内经Drosha-DGCR8复合物加工产生pre-miRNA在细胞浆内, pre-miRNA进一步经Dicer酶剪切为miRNA-miRNA*二聚体(其中miRNA为引导链,miRNA* 为信息链),装载至Argonaute 蛋白1(AGO1) 而发挥作用c:(鼠类) piRNA 的生物合成尚不清楚piRNA来源于单链RNA 前体,而且不依赖于Dicer酶产生的初级正义piRNA倾向于与 MILI结合,在出生前的睾丸、MILI 和MIWI2 均参与复制周期,在次级反义piRNA中MIWI2 比MILI 更为丰富,次级反义piRNA可能直接裂解转座子mRNA。

      图:于红,表观遗传学:生物细胞非编码RNA调控的研究进展2、MicroRNA的功能2.1 miRNA参与细胞自噬调控[1]在自噬的启动(induction)、囊泡成核(vesicle nucleation)、囊泡延伸(vesicle elongation)、自噬回收(Retrieval)与囊泡融合(fusion)等几个阶段中均参与调控此外,miRNA也可通过其他方式调节细胞自噬直接调控,直接作用的位点目前发现有:对STMN1基因(该基因编码的Stathmin蛋白被发现参与自噬调控), DRAM2 ,IRGM,线粒体自噬受体FUNDC1和NIX等间接调控,即通过对细胞分子通路中重要的调控性蛋白进行调控,从而间接地调控自噬的过程调控靶点有:SMAD4,FOXO3,ATM,RUNX3,p53;EZH2,PI3K/AKT通路,hnRNP A1,EGFR等图:陈月琴等,非编码RNA与细胞自噬调控2.2 参与表观遗传调控[3]miRNA可通过调控组蛋白修饰引起染色质重塑即miRNA可通过调控组蛋白的修饰而参与TGSmiRNA还可通过调控DNA甲基化酶的表达而影响DNA甲基化参与TGS2.3 在肿瘤中的调节机制[4]2.3.1 对致癌基因的调节。

      在肿瘤细胞中表达水平升高的miRNA被认为是致癌基因,通过抑制抑癌基因和(或)抑制控制细胞分化和凋亡的基因来促进肿瘤进展首先,miR-17-92群簇被认为在肿瘤细胞调节中起重要作用,miR-17-92群簇可能通过调节两个抑癌基因---PTEN和视网膜母细胞瘤基因(RB)家族的成员甙Rb2/ p130的基因促进肿瘤进展PTEN通过PI3K-AKT / PKB通路促进凋亡其次,miR-17-92群簇对细胞周期和增殖的作用部分是通过对E2F转录因子基因调节实现最后,miR-17-92群簇通过ARF-p53基因通路抑制细胞凋亡,进而促进肿瘤的发展此外,miR-372和miR-373是另外两个致癌的miRNA,通过直接抑制抑癌基因LATS2的表达来解除的p53介导的对细胞周期依赖性蛋白激酶(CDK)的抑制,进而促进细胞增殖和肿瘤进展人类睾丸生殖细胞肿瘤的发生中涉及这一机制2.3.2对抑癌基因的调节在肿瘤细胞中表达水平降低的miRNA的被认为是抑癌基因,通过抑制致癌基因和(或)抑制控制细胞分化和增殖的基因来抑制肿瘤进展let-7的家族的miRNA的在许多肿瘤中表达下调,其作用的靶基因可能是RAS致癌基因,包括肺癌和乳腺癌.miR-29家族成员通过靶向结合抗凋亡蛋白基因MCL1和致癌基因TCL1表现出抑癌作用。

      此外,在白血病患者、垂体腺瘤患者中miR-15和miR-1均表现出表达的抑制2.4 参与糖代谢的调控[6]2.4.1 miRNA通过调控己糖激酶基因表达影响肿瘤细胞的糖代谢乳腺癌细胞中白介素-6(IL-6)和miR-155均可通过上调hk2基因表达来促进糖酵解而miR-125a/ b和miR-143是hk2的反向调节者2.4.2 miRNA通过调控磷酸果糖激酶基因表达影响肿瘤细胞的糖代谢人肺腺癌中肌型磷酸果糖激酶(PFKM)和糖酵解均上调,而miR-320a可以下调PFKM表达研究发现,另一种miRNA----miR-520s可以下调PFKP表达这说明有多种miRNA可以通过调节磷酸果糖激酶来调控肿瘤细胞的糖代谢2.4.3 miRNA通过调控丙酮酸激酶基因表达影响肿瘤细胞的糖代谢研究发现, PKM2 mRNA是miR-122的直接作用靶点,而miR-122通过调节PKM2的量来调控肿瘤细胞的糖代谢3. siRNA参与表观遗传调控[3]siRNA 能在哺乳动物细胞中介导 DNA 甲基化和组蛋白修饰,从而导致转录基因沉默(TGS)目前研究表明:Argonautes 蛋白家族 (AGO1 及 AGO2 ),DNMT 3a,组蛋白去乙酰化酶(Histone deacetylase-1, HDAC-1)和/或 Polycomb 蛋白家族 ( Polycomb group, PcG )的 EZH2 ( Enhancer of zeste homolog 2 ) 参与了siRNA 诱导的 TGS。

      AGO 在 TGS 中的作用早于靶标启动子的组蛋白甲基化,当靶标沉默态组蛋白修饰 ( H3K9 甲基化 ) 增加时,AGO-1 明显减少, 证明 AGO1 及 RNAPII 对 H3K9 的双甲基化是必需的TGS 的建立与维持需要多种不同的蛋白:通常 AGO1、DNMT3a 及 HDAC-1 对于起始的沉默是必需的,而 DNMT1 对于维持沉默是必需的4. piRNA 参与表观遗传调控哺乳动物细胞 piRNA 分为两个亚簇:一是粗线期 piRNA 簇:主要出现于减数分裂的粗线期,持续表达至单倍体精子细胞阶段,一般很少有重复片段;二是粗线前期 piRNA 簇:主要出现于减数分裂前的生殖细胞,虽然具有粗线期 piRNA 簇的分子特征,但来源于一个完全不同的簇,具有重复片段4.1 piRNA 相关的 DNA 甲基化[3]piRNA 的生物合成假说有两个,一是 piRNA 由长单链分子产生;二是 piRNA 可能为初级转录产物哺乳动物细胞的基因簇并非初级 piRNA 的主要来源,而是由转座子 mRNA 产生初级正义 piRNA 参与扩增循环DNA甲基酶家族(DNMT3a、DNMT3b及DNMT3L)在转座子甲基化的形成中起主要作用。

      Piwi/piRNA复合体能介导转座子甲基化的形成,且Piwi途径位于DNA甲基化调节因子的上游,piRNA是生殖细胞内DNA甲基化的特异性决定子4.2 piRNA 参与染色体组装[5] piRNA基因在调节染色质组装的过程中发挥了引导作用,即 piRNA 基因可募集 Piwi 蛋白,HP1a,组蛋白甲基转移酶SU(VAR)3-9 等表观调控因子到基因组的特异位点,并阻止RNA聚合酶Ⅱ与基因组结合5. lncRNA的功能 lncRNA有多种不同的来源,目前认为可能是(1)编码蛋白的基因结构中断而转变为lncRNA;(2)染色质重组的结果,即两个未转录的基因与另一个独立的基因并列而产生含多个外显子的lncRNA;(3)由非编码基因复制过程中的反移位产生;(4)由局部的串联复制子产生邻近的非编码RNA;(5)基因中插入一个转座成分而产生有功能的非编码RNA[3]5.1 参与细胞调控长非编码RNA在转录起始的调控、转录及转录后的调控中发挥着重要作用,因而影响着各种各样的生物学过程,比如,剂量补偿、基因印迹、细胞周期、发育、配子形成等过程分子机制:图:陈晓敏等,长非编码RNA研究进展诱饵分子:长非编码 RNA 通过结合目标蛋白或 miRNA 从而稀释了目标分子在细胞内的水平,进而影响其功能。

      导向作用:通过与目标分子的结合,长非编码 RNA 能指引核糖核蛋白复合体定位至特异的目标区域,作用方式可以是顺式也可以是反式反式作用:通过与 RNA 聚合酶作用以辅助转录的方式或者作为一些小的调节RNA 分子的互补配对靶分子;顺式作用:通过与目标 DNA 分子结合形成 RNA∶DNA 异源双链核酸分子,或者 RNA∶DNA∶DNA 异源三链核酸分子,或者RNA识别特异染色质的复合物表面特征,引导目标基因附近的染色质改变分子支架:lncRNA 的不同功能域可以结合不同的蛋白质复合体,从而提供类似分子支架的功能,以引导相关的不同类型的大分子复合体在目标区域组装以协同发挥调控作用lncRNA 与 miRNA 转录后相互作用方式:图:陈晓敏等,长非编码RNA。

      点击阅读更多内容
      相关文档
      高等学校学生手册.doc 2025年区教育系统招聘编外教师储备人才事业单位考试押题.docx 2025年秋季青岛版三年级数学上册认识轴对称现象教学课件.pptx 2025年秋季青岛版三年级数学上册用乘法估算解决问题教学课件.pptx 2025年秋季青岛版三年级数学上册两、三位数乘一位数的笔算(不进位)教学课件.pptx 2025年秋季青岛版三年级数学上册1200张纸有多厚教学设计范文.docx 2025年秋季青岛版三年级数学上册多位数除以一位数教学课件.pptx 2025年秋季青岛版三年级数学上册认识平移、旋转现象教学课件.pptx 2025年秋季青岛版三年级数学上册多位数乘一位数教学设计范本.docx 2025年秋季青岛版三年级数学上册认识平移与旋转教学设计范文.docx 2025年秋季青岛版三年级数学上册乘数中间有0或末尾有0的乘法教学课件.pptx 2025年秋季青岛版三年级数学上册两位数乘一位数的笔算(进位)教学课件.pptx 2025年秋季青岛版三年级数学上册《两、三位数乘一位数的笔算(不进位)》教学设计与意图.docx 2025年秋季青岛版三年级数学上册我学会了吗教学课件.pptx 2025年连云港市妇幼保健院招聘专业技术人员考试笔试试题.docx 2025年深圳市大鹏新区发展和财政局招聘考试笔试试卷.docx 2025年绵阳市梓潼县财政投资评审中心招聘考试试题.docx 2025年来宾市妇幼保健院招聘考试笔试试题.docx 2025年无极县教育系统招聘教师考试笔试试卷.docx 2025年灵山县第三中学调配教师考试笔试试题.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.