好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2021-2022学年河北省石家庄市安香乡中学高二数学理联考试卷含解析.docx

7页
  • 卖家[上传人]:小**
  • 文档编号:245825654
  • 上传时间:2022-01-25
  • 文档格式:DOCX
  • 文档大小:318.44KB
  • / 7 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2021-2022学年河北省石家庄市安香乡中学高二数学理联考试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 椭圆的焦距为2,则m的值等于(  )A.5或3 B.8 C.5 D.或参考答案:A【考点】椭圆的简单性质.【分析】根据椭圆方程的标准形式,求出a、b、c的值,即得焦距 2c 的值列出方程,从而求得n的值.【解答】解:由椭圆得:2c=2得c=1.依题意得4﹣m=1或m﹣4=1解得m=3或m=5∴m的值为3或5故选A.2. 函数f(x)=(x2﹣2x)ex的图象大致是(  )A. B. C. D.参考答案:A【考点】函数的图象与图象变化.【分析】本题是选择题,可采用排除法进行逐一排除,根据f(0)=0可知图象经过原点,以及根据导函数大于0时原函数单调递增,求出单调增区间,从而可以进行判定.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)ex,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.3. 函数y=2sinx的单调增区间是(  )A.[2kπ﹣,2kπ+](k∈Z) B.[2kπ+,2kπ+](k∈Z)C.[2kπ﹣π,2kπ](k∈Z) D.[2kπ,2kπ+π](k∈Z)参考答案:A【考点】HM:复合三角函数的单调性.【分析】由于y=2u是增函数,只需求u=sinx的增区间即可.【解答】解:因为y=2x是增函数,求函数y=2sinx的单调增区间,就是g(x)=sinx的增区间,它的增区间是[2kπ﹣π/2,2kπ+π/2](k∈Z)故选A.4. 已知抛物线C的顶点在原点,焦点为F(﹣3,0),C上一点P到焦点F的距离为9,则点P的一个坐标为(  )A.(﹣3,6) B.(﹣3,6) C.(﹣6,6) D.(﹣6,6)参考答案:D【考点】抛物线的简单性质.【分析】利用抛物线的简单性质,列出方程求出P的横坐标,即可推出结果.【解答】解:抛物线C的顶点在原点,焦点为F(﹣3,0),准线方程为:x=3,C上一点P到焦点F的距离为9,设P(x,y)可得﹣x+3=9,解得x=﹣6,则=9,可得y=.故选:D. 5. 如图所示,直线过椭圆的左焦点F1和一个顶点B,该椭圆的离心率为(    ). A. B. C. D.参考答案:D直线的斜率为,则,即,解得.6. 等比数列{an}中a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)… (x-a8),则f′(0)=A. 26            B. 29           C. 212                       D. 215参考答案:C7. △ABC的三边长分别是a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的面积为(  )A.25π B.5π C. D.参考答案:C【考点】余弦定理.【分析】由已知利用三角形面积公式可求c的值,进而利用余弦定理可求b的值,再利用正弦定理可求三角形外接圆的半径,利用圆的面积公式即可计算得解.【解答】解:∵S△ABC=2,a=1,B=45°,∴acsinB==2,解得:c=4,∴由余弦定理可得:b===5,∴2R=,∴S外接圆=πR2=.故选:C.【点评】本题主要考查了三角形面积公式,余弦定理,正弦定理,圆的面积公式在解三角形中的应用,考查了转化思想,属于基础题.8. 在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是(     )A.74       B.121       C.-74      D.-121参考答案:D9. 在图21-6的算法中,如果输入A=138,B=22,则输出的结果是(  )图21-6A.2             B.4              C.128            D.0参考答案:A10. 若点,,当取最小值时,的值等于(   ).A.        B.          C.           D.参考答案:C二、 填空题:本大题共7小题,每小题4分,共28分11. 点O在内部且满足,则的面积与凹四边形. 的面积之比为________.参考答案:5:4作图如下作向量=2,以、为邻边作平行四边形ODEF,根据平行四边形法则可知:+=即2+2=由已知2+2==-,所以=-,BC是中位线,则OE=2OG=4OH,则线段OA、OH的长度之比为4:1,从而AH、OH的长度之比为5:1,所以△ABC与△OBC都以BC为底,对应高之比为5:1,所以△ABC与△OBC的面积比为5:1,∴三角形ABC的面积与凹四边形ABOC面积之比是5:412. 已知抛物线的焦点为,经过的直线与抛物线相交于两点,则以AB为直径的圆在轴上所截得的弦长的最小值是            。

      参考答案:13. 在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB与CD成60°角,则B、D之间的距离为  .参考答案:2或【考点】点、线、面间的距离计算.【分析】先利用向量的加法将向量转化成,等式两边进行平方,求出向量的模即可.【解答】解:∵∠ACD=90°,∴=0.同理 =0.∵AB和CD成60°角,∴<>=60°或120°.∵,∴=3+2×1×1×cos<>=∴||=2或,即B、D间的距离为2或.故答案为:2或.14. 已知a>0,b>0,a+b=2,则y=+的最小值为  .参考答案:【考点】基本不等式.【分析】利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=2,∴=1∴y==()()=++≥+2=(当且仅当b=2a时等号成立)则的最小值是 故答案为:.15. 从中得出的一般性结论是_____________参考答案: 注意左边共有项 16. 已知点P为双曲线﹣=1(a>0,b>0)右支上的一点,点F1,F2分别为双曲线的左、右焦点,双曲线的一条渐近线的斜率为,若M为△PF1F2的内心,且S=S+λS,则λ的值为  .参考答案:【考点】双曲线的简单性质.【分析】根据三角形的面积公式以及三角形的面积公式,建立方程关系,结合双曲线的渐近线斜率以及a,b,c的关系进行求解即可.【解答】解:设内切圆的半径为R,∵S=S+λS成立,∴S﹣S=λS,即|PF1|?R﹣|PF2|?R=?λ|P1P2|?R,即×2a?R=?λ?2c?R,∴a=λc,∵双曲线的一条渐近线的斜率为,∴=即b=a=λc,∵a2+b2=c2,∴λ2c2+3λ2c2=c2,即4λ2=1,即λ2=,得λ=,故答案为:.17. 展开式中的常数项为        .参考答案:  40  略三、 解答题:本大题共5小题,共72分。

      解答应写出文字说明,证明过程或演算步骤18. 如图,在长方体ABCD - A1B1C1D1中,AB = 4,AD = 2,A1A = 2,点F是棱BC的中点,点E在棱C1D1上,且D1E = λ EC1(λ为实数).(1)求二面角D1 - AC - D的余弦值; (2)当λ =时,求直线EF与平面D1AC所成角的正弦值的大小;(3)求证:直线与直线不可能垂直.参考答案:(1)如图所示,建立空间直角坐标系.则,.  设平面的法向量为,则.即.令,则.  ∴平面的一个法向量.  又平面的一个法向量为.故,即二面角的余弦值为.(2)当λ =时,E(0,1,2),F(1,4,0),.所以.               因为 ,所以为锐角, 从而直线EF与平面所成角的正弦值的大小为.   (3)假设,则. ∵,∴,.               ∴.化简得.该方程无解,所以假设不成立,即直线不可能与直线不可能垂直.19. 在矩形中ABCD中,AB=4,BC=2,M为动点,DM、CM的延长线与AB(或其延长线)分别交于点E、F,若?+2=0.(1)若以线段AB所在的直线为x轴,线段AB的中垂线为y轴建立平面直角坐标系,试求动点M的轨迹方程;(2)不过原点的直线l与(1)中轨迹交于G、H两点,若GH的中点R在抛物线y2=4x上,求直线l的斜率k的取值范围.参考答案:考点:直线与圆锥曲线的综合问题;平面向量数量积的运算;轨迹方程. 专题:平面向量及应用.分析:(1)设M(x,y),由已知D、E、M及C、F、M三点共线求得xE、xF,可得、 的坐标,=,代入?+2=0,化简可得点M的轨迹方程.(2)设直线l的方程为 y=kx+m (m≠0),A(x1,y1)、B(x2,y2),M(x0,y0),由 ,可得关于x的一元二次方程,由△>0,可得 4k2﹣m2+3>0 ①.利用韦达定理求得M的坐标,将点M的坐标代入y2=4x,可得 m=﹣,k≠0 ②,将②代入①求得k的范围.解答: 解:(1)设M(x,y),由已知得A(﹣2,0)、B (2,0)、C(2,2)、D(﹣2,2),由D、E、M及C、F、M三点共线得,xE,xF=.又=(xE+a,0),=(xF﹣a,0),=,代入?+2=0,化简可得 +=1.(2)设直线l的方程为 y=kx+m (m≠0),A(x1,y1)、B(x2,y2),M(x0,y0),由 ,可得 (3+4k2)x2+8kmx+4m2﹣12=0,由题意可得△=(8km)2﹣4(3+4k2)(4m2﹣12)>0,即 4k2﹣m2+3>0 ①.又x1+x2=﹣,故M(﹣,),将点M的坐标代入y2=4x,可得 m=﹣,k≠0 ②,将②代入①得:16k2 (3+4k2)<81,解得﹣<k< 且k≠0.点评:本题主要考查两个向量的数量积公式,两个向量坐标形式的运算法则,直线和圆锥曲线的位置关系,二次函数的性质,属于中档题.20. (本小题满分12分)如图所示,在圆锥PO中, PO=,?O的直径AB=2, C为弧AB的中点,D为AC的中点.(1)求证:平面POD^平面PAC;(2)求二面角B—PA—C的余弦值.参考答案:证明:(1)如图所示,连接OC.OA=OC,D是AC的中点,\AC^OD,在圆锥PO中,PA=PC,则AC^PD,又PD?OD=D,\AC^平面POD,而ACì平面PAC, \平面POD^平面PAC------------5分(2)在平面POD中,过O作OH^PD于H,由(1)知:平面POD^平面PAC,\OH^平面PAC,过H作HG^PA于G,连OG,则OG^PA(三垂线定理)\DOGH为二面角B—PA—C的平面角,在RtDODA中,OD=OA×450= .21. 用分析法证明: 已知,求证     参考答案:要证,只需证即,只需证,即证显然成立,因此成立22. (本小题满分14分)深圳科学高中致力于培养以科学、技术、工程和数学见长的创新型高中学生,“工程技术”专用教室是学校师生共建的创造者的平台,该教室内某设备价值24。

      点击阅读更多内容
      相关文档
      礼仪讲授教案.docx 高考语文一轮复习讲义 第5部分 传统文化阅读·名句名篇默写.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 微任务 作文书写——比天还大的事儿.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组二 真题研练.docx 高考语文一轮复习讲义 第3部分 传统文化阅读 文言文(考点部分) 任务组三 任务四 仔细比对准确提取概括分析文意.docx 高考语文一轮复习讲义 第1部分 语言策略与技能 任务组二 任务五 看准对象因境设辞做到语言得体.docx 高考化学 1.传统文化与STSE 答案解析.docx 高考语文一轮复习讲义现代文阅读 专题16 Ⅱ 真题研练.docx 高考化学 专项拔高抢分练 9.反应热与反应历程.docx 高考化学 专项拔高抢分练 1.传统文化与STSE.docx 高考物理 板块三  气体实验定律和热力学定律的综合应用.docx 高考化学 二题型3 无机化工生产流程题.docx 高考语文一轮复习讲义 第4部分 写作 专题17 Ⅲ 突破二 绘声绘色巧用细节描写生动丰满.docx 高考数学 中档大题练1.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面教材文言文复习综合试卷.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组三 微任务一 聚焦诗意准确选择.docx 高考数学 创新融合4 数列与导数.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面 教材文言文点线面 必修5课文1 归去来兮辞 并序.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 任务二 “三管”齐下美“言”有术文采抢眼养颜.docx 高考数学 满分案例三 立体几何.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.