好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2021-2022学年海南省三亚市达标名校数学高一第二学期期末调研试题含解析.doc

15页
  • 卖家[上传人]:茅****
  • 文档编号:291054913
  • 上传时间:2022-05-11
  • 文档格式:DOC
  • 文档大小:1.07MB
  • / 15 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2021-2022学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内2.答题时请按要求用笔3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知内角的对边分别为,满足且,则△ABC ( )A.一定是等腰非等边三角形 B.一定是等边三角形C.一定是直角三角形 D.可能是锐角三角形,也可能是钝角三角形2.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球3.对于一个给定的数列,定义:若,称数列为数列的一阶差分数列;若,称数列为数列的二阶差分数列.若数列的二阶差分数列的所有项都等于,且,则( )A.2018 B.1009 C.1000 D.5004.实数数列为等比数列,则( )A.-2 B.2 C. D.5.南北朝数学家祖暅在推导球的体积公式时构造了一个中间空心的几何体,经后继学者改进后这个中间空心的几何体其三视图如图所示,下列那个值最接近该几何体的体积( )A.8 B.12 C.16 D.246. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.7.在△中,为边上的中线,为的中点,则A. B.C. D.8.下列说法正确的是( )A.若,则 B.若,,则C.若,则 D.若,,则9.在平面直角坐标系中,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,则的值为( )A. B. C. D.10.设等差数列,则等于( )A.120 B.60 C.54 D.108二、填空题:本大题共6小题,每小题5分,共30分。

      11.在上定义运算,则不等式的解集为_____.12.展开式中,各项系数之和为,则展开式中的常数项为__________.13.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.14.函数的最小正周期是________.15.若在等比数列中,,则__________.16.已知向量,,若,则__________.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知数列的前项和();(1)判断数列是否为等差数列;(2)设,求;(3)设(),,是否存在最小的自然数,使得不等式对一切正整数总成立?如果存在,求出;如果不存在,说明理由;18.已知函数的定义域为R(1)求的取值范围;(2)若函数的最小值为,解关于的不等式19.设数列为等比数列,且,,(1)求数列的通项公式:(2)设,数列的前项和,求证:.20.已知方程;(1)若,求的值;(2)若方程有实数解,求实数的取值范围;(3)若方程在区间上有两个相异的解、,求的最大值.21.如图,在三棱锥A﹣BCD中,AB=AD,BD⊥CD,点E、F分别是棱BC、BD的中点.(1)求证:EF∥平面ACD;(2)求证:AE⊥BD.参考答案一、选择题:本大题共10小题,每小题5分,共50分。

      在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据正弦定理可得和,然后对进行分类讨论,结合三角形的性质,即可得到结果.【详解】在中,因为,所以,又,所以,又 当时,因为,所以时等边三角形;当时,因为,所以不存在,综上:一定是等边三角形.故选:B.【点睛】本题主要考查了正弦定理的应用,解题过程中注意两解得情况,一般需要检验,本题属于基础题.2、C【解析】从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.3、C【解析】根据题目给出的定义,分析出其数列的特点为等差数列,利用等差数列求解.【详解】依题意知是公差为的等差数列,设其首项为,则,即,利用累加法可得,由于,即解得,,故.选C.【点睛】本题考查新定义数列和等差数列,属于难度题.4、B【解析】由等比数列的性质计算,注意项与项之间的关系即可.【详解】由题意,,又与同号,∴.故选B.【点睛】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.5、C【解析】由三视图确定此几何体的结构,圆柱的体积减去同底同高的圆锥的体积即为所求.【详解】该几何体是一个圆柱挖掉一个同底同高的圆锥,圆柱底为2,高为2,所求体积为,所以C选项最接近该几何体的体积.故选:C【点睛】本题考查由三视图确定几何体的结构及求其体积,属于基础题.6、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.7、A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得 ,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.8、D【解析】利用不等式的性质或举反例的方法来判断各选项中不等式的正误.【详解】对于A选项,若且,则,该选项错误;对于B选项,取,,,,则,均满足,但,B选项错误;对于C选项,取,,则满足,但,C选项错误;对于D选项,由不等式的性质可知该选项正确,故选:D.【点睛】本题考查不等式正误的判断,常用不等式的性质以及举反例的方法来进行验证,考查推理能力,属于基础题.9、C【解析】根据三角函数的定义,即可求解,得到答案.【详解】由题意,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,根据三角函数的定义可得.故选:C.【点睛】本题主要考查了三角的函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与计算能力,属于基础题.10、C【解析】题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。

      详解】,选C.【点睛】题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决也可将等式全部化为的表达式,整体代换计算出二、填空题:本大题共6小题,每小题5分,共30分11、【解析】根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.12、【解析】令,则,即,因为的展开式的通项为,所以展开式中常数项为,即常数项为.点睛:本题考查二项式定理;求二项展开式的各项系数的和往往利用赋值法(常赋值为),还要注意整体赋值,且要注意展开式各项系数和二项式系数的区别.13、.【解析】连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.14、【解析】根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.15、【解析】根据等比中项的性质,将等式化成即可求得答案.【详解】是等比数列,若,则.因为,所以,.故答案为:1.【点睛】本题考查等比中项的性质,考查基本运算求解能力,属于容易题.16、1【解析】由,得.即.解得.三、解答题:本大题共5小题,共70分。

      解答时应写出文字说明、证明过程或演算步骤17、(1)否;(2);(3);【解析】(1)根据数列中与的关系式,即可求解数列的通项公式,再结合等差数列的定义,即可求解;(2)由(1)知,求得当时,,当时,,利用等差数列的前项和公式,分类讨论,即可求解.(3)由(1)得到当时,,当时,,结合裂项法,求得,即可求解.【详解】(1)由题意,数列的前项和(),当时,,当,所以数列的通项公式为,所以数列不是等差数列.(2)由(1)知,令,解得,所以当时,,当时,,①当时,②当时,综上可得.(3)由(1)可得,当时,,当时,,,要使得不等式对一切正整数总成立,则,即.【点睛】本题主要考查了数列中与的关系式,等差数列的定义,数列的绝对值的和,以及“裂项法”的综合应用,着重考查了分析问题和解答问题的能力,以及推理与计算能力,试题有一定的综合性,属于中档试题.18、(1);(2)【解析】(1)由的定义域为可知,,恒成立,即可求出的范围.(2)结合的范围,运用配方法,即可求出的值,进而求解不等式.【详解】(1)由已知可得对,恒成立,当时,恒成立当时,则有,解得,综上可知,的取值范围是[0,1](2)由(1)可知的取值范围是[0,1]显然,当时,,不符合.所以,,,由题意得,,,可化为,解得,不等式的解集为。

      点睛】主要考查了一元二次不等式在上恒成立求参数范围,配方法以及一元二次不等式求解问题,属于中档题.对任意实数恒成立的条件是;而任意实数恒成立的条件是。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.