好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

6(2)向量的点积与叉积.ppt

34页
  • 卖家[上传人]:住在山****ck
  • 文档编号:154717733
  • 上传时间:2020-12-07
  • 文档格式:PPT
  • 文档大小:1.23MB
  • / 34 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1,两向量的点积,两向量的叉积,*向量的混合积,小结 思考题 作业,第二节 向量的点积与叉积,第七章 空间解析几何与向量代数,2,,,实例,启示,两向量作这样的运算,,定义,一、两向量的数量积,1. 定义,一物体在常力,作用下沿直线从点,表示位移,,所作的功为,移动到点,结果是一个,向量,数量积,数量.,3,,结论:两向量的数量积等于其中一个向量的模和另一个向量在这向量的方向上的投影的乘积.,,重要,(两向量的数量积的几何意义),,4,数量积也称为,2、关于数量积的结论:,证,“点积”、,“内积”.,(1),(2),(1),5,证,此时也称,(2),与,正交.,例,6,3. 数量积符合下列运算规律,(1)交换律:,(2)分配律:,(3)若 为数:,若 、 为数:,(可用定义证),7,向量的数量积不满足消去律,,?,,事实上,,?,平行于 的向量,平行于 的向量,即在一般情况下,,8,用向量的数量积,证明恒等式:,即,平行四边形对角线的平方和等于四边的平方和(如图).,证,练习,9,设,,数量积的坐标表达式:对应坐标乘积之和,4. 用坐标表示式计算数量积,分配律,10,两向量夹角余弦的坐标表示式,由此可知两向量垂直的充要条件为,5. 两向量的夹角 (数量积在几何中的应用),数量积的物理意义为,力 推动质点从点A,沿直线运动到点B所作的功,(即实例),11,解,例1,两两垂直,,设,求,关键:利用,12,为单位向量,且,例2 设,求:,13,,,证,(由分配律),例,证明向量,与向量,垂直.,,14,下列命题是否正确,错,,错.,对.,?,等式左边没意义.,错.,15,实例,1. 定义,二、两向量的向量积,设O为一根杠杆L的支点,,有一个力,作用于这杠杆上P点处.,对支点O的力矩是一,向量,,它的模为,,,,所决定的平面, 指向符合右手系.,16,,定义,关于向量积的说明:,//,向量积也称为“叉积”、,大小,“外积”.,向量,向量积,的方向既垂直于,又垂直于,指向符合右手系.,方向,17,2. 向量积符合下列运算规律,(2) 分配律,(3) 若 为数,证,//,//,(1) 反交换律,//,,18,向量的向量积不满足消去律,,向量的向量积不满足交换律.,,即在一般情况下,,19,设,,向量积的坐标表达式,3. 用坐标表示式计算向量积,分配律,20,,,向量积还可用三阶行列式表示,//,由上式可推出,向量积的几何意义,,例,不能同时为零,,但允许两个为零.,表示以,为邻边的平行四边形的面积.,,,21,下列命题是否正确,错,对,?,22,解,,例,求与,都垂直的单位向量.,23,,解,,,,三角形ABC的面积为,,,例,已知三角形的顶点,计算从顶点B到边AC的高的长度BD.,24,求同时垂直于向量 和x轴的 单位向量.,两种方法:,法二,练习,法一,解,用向量积.,设x轴为,单位向量为,用数量积.,即可得.,提示,用向量积或数量积.,,,,,25,,分析,即 A、B 、D三点共线.,希自己再用法(2) 证,试比较哪种方法简单?,其方法有两种:,,练习,证,用向量证三点共线只要证明,,,(1) 证,,,(2) 证,,,用法一,,,,,,26,定义,设,混合积的坐标表达式,三、 *向量的混合积,设已知三个向量,、、,数量,称为这个向量的,记为,混合积,,27,向量混合积的几何意义,关于混合积的说明:,,,,(1),(2),(3),,向量的混合积,是这样的一个数,,它的绝对值表示,以向量,为棱的平行六面体的体积.,28,,解,例,,,,,,,,,已知,计算,29,,解,,,,由立体几何知,,四面体的体积等于以向量,为棱的平行六面体的体积的六分,之一.,已知空间内不在一平面上的四点A (x1, y1, z1),B (x2, y2, z2), C (x3, y3, z3), D(x4, y4, z4),,求四面体,例,的体积.,30,式中正负号的选择必须和行列式的符号一致.,,,,31,练习,1. 设,2. 设,3. 设,32,向量的数量积,向量的向量积,向量的混合积,结果是一个数量、,结果是一个向量、,结果是一个数量、几何意义、三向量共面,四、小结,几何意义、,物理意义、,两向量垂直的充要条件;,几何意义、,物理意义、,两向量平行的充要条件;,的充要条件.,33,思考题 (是非题),对两个非零向量,是,注意,,因为,又,所以,34,作业,习题6.2 (16页),(A) 3. 4. 5. 8.,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.