好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

平面问题的极坐标解答优秀课件.ppt

111页
  • 卖家[上传人]:pu****.1
  • 文档编号:588720018
  • 上传时间:2024-09-08
  • 文档格式:PPT
  • 文档大小:3.37MB
  • / 111 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第一节第一节 极坐标中的平衡微分方程极坐标中的平衡微分方程第二节第二节 极坐标中的几何方程及物理方程极坐标中的几何方程及物理方程第三节第三节 极坐标中的应力函数与相容方程极坐标中的应力函数与相容方程第四节第四节 应力分量的坐标变换式应力分量的坐标变换式第五节第五节 轴对称应力和相应的位移轴对称应力和相应的位移 第六节第六节 圆环或圆筒受均布压力圆环或圆筒受均布压力第八节第八节 圆孔的孔口应力集中圆孔的孔口应力集中第九节第九节 半平面体在边界上受集中力半平面体在边界上受集中力第十节第十节 半平面体在边界上受分布力半平面体在边界上受分布力例题例题第七节第七节 压力隧洞压力隧洞 区别:直角坐标中, x和y坐标线都是直线,有 固定的方向, x 和y 的量纲均为L 极坐标中, 坐标线( =常数)和 坐标线( =常数)在不同点有不同的方向;相同:两者都是正交坐标系 直角坐标直角坐标( (x, ,y) )与极坐标与极坐标 比较:比较: 坐标线为直线, 坐标线为圆弧曲线; 的量纲为L, 的量纲为1。

      这些区别将引起弹性力学基本方程的区别 对于圆形,弧形,扇形及由径向线和环向围成的物体,宜用极坐标求解用极坐标表示边界简单,使边界条件简化应用 §4-1 极坐标中的平衡微分方程 在A内任一点( , )取出一个微分体,考虑其平衡条件微分体--由夹角为 的两径向线和距离 为 的两环向线围成 两 面不平行,夹角为 ;两 面面积不等,分别为 , 从原点出发为正, 从 x 轴向 y 轴方向 转动为正注意: 平衡条件:平衡条件:平衡条件考虑通过微分体形心 C 的 向及矩的平衡,列出3个平衡条件:注意: --通过形心C的力矩为0,当 考虑到二阶微量时,得 --通过形心C的 向合力为0,整理,略去三阶微量,得 同理,由 通过形心C的 向合力为0可得:极坐标下的平衡微分方程: 几何方程几何方程----表示微分线段上形变和位移之间的几何关系式 §4-2 几何方程及物理方程 极坐标系中的几何方程可以通过微元变形分析直接推得,也可以采用坐标变换的方法得到。

      下面讨论后一种方法根据直角坐标与极坐标之间的关系,有 注意:可求得根据张量的坐标变换公式 对平面问题: 几何方程由此可得比较可知 极坐标中的物理方程极坐标中的物理方程 直角坐标中的物理方程是代数方程,且 x 与 y 为正交, 故物理方程形式相似物理方程 极坐标中的物理方程也是代数方程,且与 为正交, 平面应力问题的物理方程:平面应力问题的物理方程:物理方程 对于平面应变问题,只须作如下同样变换, 边界条件边界条件----应用极坐标时,弹性体的边界面通常均为坐标面,即:边界条件故边界条件形式简单 平面应力问题在极坐标下的基本方程平面应力问题在极坐标下的基本方程物理方程 物理方程对于平面应变问题,只须将物理方程作如下的变换即可 以下建立直角坐标系与极坐标系的变换关系,用于:§4-3 极坐标中的应力函数 与相容方程 1、 物理量的转换; 2、从直角坐标系中的方程导出极坐标 系中的方程 函数函数的变换:将式 或 代入,坐标变量坐标变量的变换:反之 1. 1.从直角坐标系到极坐标系的变换从直角坐标系到极坐标系的变换坐标变换 或矢量矢量的变换:位移坐标变换 将对 的导数,变换为对 的导数: 可看成是 ,而 又是 的函数,即 是通过中间变量 ,为 的复合函数。

      有:坐标变换导数导数的变换: 而代入,即得一阶导数的变换公式,一阶导数 , 展开即得: 二阶导数二阶导数的变换公式,可以从式(e) 导出例如二阶导数 拉普拉斯算子拉普拉斯算子的变换:由式(f)得二阶导数 3.3.极坐标中应力用应力函数极坐标中应力用应力函数 表示表示可考虑几种导出方法:2.2.极坐标中的相容方程极坐标中的相容方程(1) 从平衡微分方程直接导出(类似于 直角坐标系中方法)相容方程应力公式 (2) 应用特殊关系式,即当x轴转动到与 轴重合时,有:(3) 应用应力变换公式(下节)应力公式 (4) 应用应力变换公式(下节),而代入式 ( f ) ,得出 的公式比较两式的 的系数,便得出 的公式应力公式 当不计体力时应力用应力函数表示的公式应力公式 4.4.极坐标系中按应力函数极坐标系中按应力函数 求解,应满足求解,应满足:(1)(1) A 内相容方程 (2) 上的应力边界条件(设全部为应 力边界条件)。

      3)(3) 多连体中的位移单值条件 按 求解 应力分量不仅具有方向性,还与其作用面有关应力分量的坐标变换关系:§4-4 应力分量的坐标变换式1、已知 ,求 (含 )的三角形微分体,厚度为1,如下图 A,考虑其平衡条件取出一个包含x、y面(含 )和 面 得同理,由得 类似地取出包含x 面,y 面和 面的三角形微分体,厚度为1,如图B,考虑其平衡条件,得 应用相似的方法,可得到2、已知 ,求 3、可以用前面得到的求一点应力状态的公式推出 4、也可以用应力坐标变换公式得到 轴对称轴对称,即绕轴对称,凡通过此轴的任何面均为对称面轴对称应力问题:轴对称应力问题:§4-5 轴对称应力和相应的位移轴对称应力问题应力数值轴对称应力数值轴对称-- -- 仅为仅为 的函数,的函数,应力方向轴对称应力方向轴对称---- 展开并两边同乘 得: 相应的应力函数 ,所以 应力公式为:((1 1))相容方程 的通解 这是一个典型的欧拉方程,引入变量 ,则 。

      则原方程变为 此方程解的形式为解的形式为代入整理得特征方程为代入整理得特征方程为 由此可得应力函数的通解为 (4-10) (2) 应力通解应力通解:(4-11) 将应变代入几何方程,对应第一、二式分别积分,(3) 应变通解:将应力代入物理方程,得 对应的应变分量的通解应变 也为轴对称4)(4)求对应的位移: 分开变量,两边均应等于同一常量F,将 代入第三式, 由两个常微分方程, 其中代入 ,得轴对称应力对应的位移通解,轴对称应力对应的位移通解,I,K—为x、y向的刚体平移,H —为绕o点的刚体转动角度位移通解(4-12) 说明说明(2)在轴对称应力条件下,形变也是轴对称 的,但位移不是轴对称的3)实现轴对称应力的条件是,物体形状、 体力和面力应为轴对称1)在轴对称应力条件下,(4-10、11、12),为应力函数、应力和位移的通解,适用于任何轴对称应力问题说明说明 (4) 轴对称应力及对应的位移的通解已满足相容方程,它们还必须满足边界条件及多连体中的位移单值条件,并由此求出其系数A、B及C。

      说明说明(5) 轴对称应力及位移的通解,可以用于求解应力或位移边界条件下的任何轴对称问题6) 对于平面应变问题,只须将 换为 圆环(平面应力问题)和圆筒(平面应变问题)受内外均布压力,属于轴对称应力轴对称应力问题,可以引用轴对称应力问题的通解 §4-6 圆环或圆筒受均布压力问题 问题 边界条件是边界条件 考察多连体中的位移单值条件多连体中的位移单值条件:: 圆环或圆筒,是有两个连续边界的多连体而在位移解答中, 式(b)中的 条件是自然满足的,而其余两个条件还不足以完全确定应力解答(a) 单值条件 是一个多值函数:对于 和 是同一点,但式(c)却得出两个位移值由于同一点的位移只能为单值,因此 B = 0单值条件 由B=0 和边界条件 (b) ,便可得出拉梅解答,单值条件 (4-13) 解答的应用:(1)只有内压力(2)只有内压力 且 ,成为 具有圆孔的无限大薄板(弹性体) (3)只有外压力单值条件 单值条件的说明:单值条件的说明:(1)多连体中的位移单值条件,实质上就 是物体的连续性条件(即位移连续性 条件)。

      2)在连续体中,应力、形变和位移都 应为单值单值条件 按位移求解时:取位移为单值,求形变(几何方程)也为单值,求应力(物理方程)也为单值 按应力求解时:取应力为单值,求形变(物理方程)也为单值,求位移(由几何方程积分),常常会出现多值项 所以,按应力求解时,对于多连体须要校核位移的单值条件单值条件 对于单连体,通过校核边界条件等,位移单值条件往往已自然满足; 对于多连体,应校核位移单值条件,并使之满足 §4-7 压力隧洞 本题是两个圆筒的接触问题接触问题,两个均为轴对称问题(平面应变问题)1.1.压力隧洞压力隧洞--圆筒埋在无限大弹性体中,受有均布内压力圆筒和无限大弹性体的弹性常数分别为压力隧洞 因为不符合均匀性假定,必须分别采用两个轴对称解答:圆筒无限大弹性体压力隧洞 应考虑的条件:(1)位移单值条件:(2)圆筒内边界条件:(3)无限远处条件,由圣维南原理,压力隧洞 由(1)—(4)条件,解出解答(书中式(4 -16))4) 的接触条件接触条件,当变形后两弹性体 保持连续时,有压力隧洞 2.2.一般的接触问题。

      一般的接触问题 (1) 完全接触:变形后两弹性体在s上仍然保持连续这时的接触条件为:在s上 当两个弹性体 ,变形前在s上互相接触,变形后的接触条件接触条件可分为几种情况:接触问题 (2) 有摩阻力的滑动接触:变形后在S上法向保持连续,而切向产生有摩阻力的相对滑移,则在S上的接触条件为 其中C为凝聚力接触问题 (4) 局部脱离:变形后某一部分边界上两弹性体脱开,则原接触面成了自由面在此部分脱开的边界上,有 (3) 光滑接触:变形后法向保持连续,但切向产生无摩阻力的光滑移动,则在s上的接触条件为 接触问题 在工程上,有许多接触问题的实际例子如机械中轴与轴承的接触,基础结构与地基的接触,坝体分缝处的接触等等一般在接触边界的各部分,常常有不同的接触条件,难以用理论解表示我们可以应用有限单元法进行仔细和深入的分析接触问题 3. 有限值条件有限值条件图(a) 设图(a)中半径为r的圆盘受法向均布压力q作用,试求其解答有限值条件 引 用 轴 对 称 问 题 的 解 答 , 并 考 虑 边 界 上的条件,上述问题还是难以得出解答。

      这时,我们可以考虑所谓有有限限值值条条件件,即除了应力集中点外,弹性体上的应力应为有限值而书中式(4-11)的应力表达式中,当 时, 和 中的第一、二项均趋于无限大,这是不可能的按照有限值条件, 当 时,必须有A=B=0有限值条件 在弹性力学问题中,我们是在区域内和边界上分别考虑静力条件、几何条件和物理条件后,建立基本方程及其边界条件来进行求解的一般地说,单值条件和有限值条件也是应该满足的,但是这些条件常常是自然满足的而在下列的情形下列的情形下须要进行校核进行校核: (1)按按应应力力求求解解时时,,多多连连体体中中的的位位移移单单值条件值条件有限值条件 在弹性力学的复变函数解法中,首先排除不符合单值条件和有限值条件的复变函数,从而缩小求解函数的范围,然后再根据其他条件进行求解 (2)无应力集中现象时无应力集中现象时, 和 ,或 处处的应力的有限值条件应力的有限值条件(因为正、负幂函数在这些点会成为无限大)有限值条件 工程结构中常开设孔口最简单的为圆孔。

      本节研究‘小孔口问题小孔口问题’,应符合((1 1)孔口尺寸<<弹性体尺寸,)孔口尺寸<<弹性体尺寸,孔口引起的应力扰动局限于小范围内§4-8 圆孔的孔口应力集中小孔口问题 ((2 2)孔边距边界较远)孔边距边界较远(>1.5倍孔口尺寸)孔口与边界不相互干扰  当弹性体开孔时,在小孔口附近,将发生应力集中现象应力集中现象小孔口问题 1.带小圆孔的矩形板,四边受均布拉力四边受均布拉力q q, 图(a)双向受拉 内边界条件为,将外边界改造成为圆边界,作则有利用圆环的轴对称解答,取且R>>r,得应力解答:双向受拉(4-17) 2. 带小圆孔的矩形板, x, y向分别受拉压力向分别受拉压力 ,图(b)所以应力集中系数为2内边界条件为最大应力发生在孔边,作 圆,求出外边界条件为双向受拉压 应用半逆解法半逆解法求解(非轴对称问题):由边界条件, 假设代入相容方程,由 ~ 关系,假设 ,所以设双向受拉压 除去 ,为典型欧拉方程,通过与前面§4-5相同的处理方式,可以得解然后代回式(d),即可求出应力。

      双向受拉压 校核边界条件 (b) , (c) ,求出 A, B, C, D,得应力解答:在孔边 , ,最大、最小应力为 ,应力集中系数为 双向受拉压(4-18) 3.带小圆孔的矩形板,只受只受x向均布拉力向均布拉力q单向受拉 应用图示叠加原理(此时令 )得应力解答应力解答:单向受拉(4-19) 讨论:讨论:(1)孔边应力, 最大应力 3q ,最小应力-q单向受拉 (2) y轴 上应力,可见,距孔边1.5D处 ,由于孔口引起的应力扰动<5%单向受拉 (3) x 轴 上应力,同样,距孔边1.5D处 ,由于孔口引起的应力扰动<5%单向受拉 4.4.小孔口的应力集中现象小孔口的应力集中现象(1)集中性集中性--孔口附近应力>>远处的应力,孔口附近应力>>无孔时的应力2)局部性局部性--应力集中区域很小,约在距孔边1.5倍孔径(D)范围内此区域外的应力扰动,一般<5%应力集中现象 (3)凹角的角点应力高度集中,曲率半径愈小,应力愈大。

      因此,工程上应尽量避免接近直交的凹角出现 如正方孔 的角点,角点曲率半径应力集中现象 5. 5.一般小孔口问题的分析:一般小孔口问题的分析: (1)假设无孔,求出结构在孔心处的 、 、 2)求出孔心处主应力(3)在远处的均匀应力场 作用下, 求出孔口附近的应力小孔口解法 当然,对于左右边界受均匀拉力作用带孔平板的应力集中问题,还可以用如下方法求解单向受拉对于无孔板,板中的应力为与之相应的应力函数为 转为极坐标表示为单向受拉现参照上述无孔板的应力函数来选取一个应力函数,使它适用于有孔板即代入相容方程得: 解得:单向受拉由此求得应力分量为: 解得:单向受拉应力分量为: 应用弹性力学问题的复变函数解法,已经解出许多各种形状的小孔口问题的解答复变函数解法是一种求解弹性力学解答的解析方法,它将复变函数的实部和虚部(均为实函数)分别表示弹性力学的物理量,将弹性力学的相容方程(重调和方程 )也化为复变函数方程,并结合边界条件进行求解。

      6. 其他小孔口问题的解答 为了了解小孔口应力集中现象的特性和便于工程上的应用,我们把远处为 (压应力场)作用下,椭圆类孔口、矩形类孔口和廊道孔口的应力解答表示在下图中,它们的应力分布情况如下 -43/2ba1 1-2.2312/3-1101 -31 1.00-2.5-1.35 (1)在 (压应力场)下,孔口的最大拉应力发生于孔顶和孔底椭圆类孔口均为 ,矩形类孔口的 ~ ,标准廊道孔口为0.90和0.92q1.8r-1.7 (c) 标准廊道孔口r0.900.92 (2)在 (压应力场)下,孔口的最大压应力发生在孔侧椭圆类孔口(垂直半轴为b,水平半轴为a)中,当 成为一条裂缝时, ;当 ;当 , ~ 矩形类孔口 从 , 越小,则压应力集中系数越接近1标准廊道 左右 半平面体在边界上受集中力作用如图。

      它是下图所示问题当 的特殊情况§4-9 半平面体在边界上 受集中力半逆解法 用半逆解法求解1)假设应力:F为单位宽度上的力,按量纲分析,应力 应为:半逆解法(2)推测 应为 (3)代入 ,得求出 f 之解,代入 ,其中前两项即Ax+By ,与应力无关,删去则取应力函数为 (5)考虑边界条件,因有集中力作用于原点,故边界条件应考虑两部分:(4)由 求应力, (b)在原点 O附近,我们可以看成是一段 小边界在此小边界附近,有面力的作 用,而面力可以向原点o简化为作用于O 点的主矢量F,和主矩为0的情形 将小边界上的应力边界条件应用圣维南 原理来进行处理圣维南原理的应用可 以有两种方式: (a) 不包含原点O,则在 显然这条件是满足的 即 ,(1)在同一小边界上,使应力的主矢量和主矩,分别等于对应面力的主矢量和主矩(数值相等,方向一致),共有3个条件。

      2) 取出包含小边界的一部分脱离体,并考虑此脱离体的平衡条件,同样也得出3个条件 本题中,由于已经将小边界上的面力简化到o点的主矢量和主矩,可以按后一种方式来处理即取出如图部分的弹性体,考虑 由此,得出应力解答式(4-21),即 求得 当F垂直于边界时, ,应力解答为当 应力解答为 相应的位移相应的位移按下列步骤求出:(2)代入几何方程,位移 相应的直角坐标系中的应力 , 如书中式(4-24)所示1)由物理方程求形变对第一式积分,求出 ,含 ;对第二式积分,求出 ,含 ; 由对称条件,代入第三式,分开变量,求出 和 ,得(3)求刚体位移H , I , Kx 向无约束条件, I 不能确定 因刚体位移 不能确定,用相对沉陷表示: 此解答用于基础梁问题地基一般为平面应变问题,故应取(4)半平面体表面的沉陷,M点 为 为基点 ,s>> §4-10 半平面体在边界 上受分布力当半平面体表面有分布荷载分布荷载 作用 时,其应力和位移解答可从集中力的解答得出。

      F(原集中力)代之为微分集中力 ( 作用点为 )x(原表示F作用点到M 的铅直距离)仍为x;y(原表示F作用点到M 的水平距离) 应代之为 应力 (式(4-24))的推广:然后对 积分,从 (原M点到F作用点的水平距离) 代之为s(原B点到F作用点的水平距离) 代之为然后对 积分,从 相对沉陷解答 的推广:F (原集中力) 代之为 半平面体在边界上受有均布单位力作用均布单位力作用 书中用上述方法,导出了基础梁计算中的公式如点K在均布力之外,则沉陷为若基点B取得很远 ,有 其中: 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.