好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

四川省攀枝花市第十五中学校2021届高三数学下学期第18次周考试题-文.doc

11页
  • 卖家[上传人]:工****
  • 文档编号:528142286
  • 上传时间:2023-02-17
  • 文档格式:DOC
  • 文档大小:1.65MB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 四川省攀枝花市第十五中学校2021届高三数学下学期第18次周考试题 文四川省攀枝花市第十五中学校2021届高三数学下学期第18次周考试题 文年级:姓名:9四川省攀枝花市第十五中学校2021届高三数学下学期第18次周考试题 文 (试卷满分150分,时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分在每个小题给出的四个选项中,只有一项是符合题目要求的1.设全集,集合,集合,则( )A. B. C. D.2.已知复数z满足(i为虚数单位),则(为z的共轭复数)在复平面内对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设,为非零向量,则“”是“与共线”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4.下图是某统计部门网站发布的《某市2020年国民经济和社会发展统计公报》中居民消费价格指数(CPI)月度涨跌幅度折线图(注:同比是今年第个月与去年第个月之比,环比是现在的统计周期和上一个统计周期之比) 2020年居民消费价格月度涨跌幅度下列说法错误的是( )①年月CPI环比下降,同比上涨②年月CPI环比上升,同比无变化③年月CPI环比下降,同比上涨④年月CPI环比下降,同比上涨 A.①③ B.①④ C.②④ D.②③5.等比数列的前项和为,若(为常数),则( )A.2 B.3 C.4 D.56.《九章算术》中记载“刍甍者,下有褒有广,而上有褒无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍甍字面意思为茅草屋顶”,如图为一“刍甍”的五面体,其中为矩形,和都是等腰三角形,,,若,且,则异面直线与所成角的大小为( )A. B. C. D.7.已知函数,给出下列结论:①的最小正周期为;②点,是函数的一个对称中心;③在上是增函数;④把的图象向左平移个单位长度就可以得到的图象,则正确的是( )A.①② B.③④ C.①②③ D.①②③④8.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量法,通过化学物质的荧光信号,对在扩增进程中成指数级增加的靶标实时检测,在扩增的指数时期,荧光信号强度达到阈值时,的数量与扩增次数满足:,其中为扩增效率,为的初始数量.已知某被测标本扩增5次后,数量变为原来的10倍,那么该标本的扩增效率约为( )(参考数据:,)A.0.369 B.0.415 C.0.585 D.0.6319.对具有线性相关关系的变量x,y,有一组观测数据,其回归直线方程是,且,,则实数a的值为( )A.-5 B.-24 C.5 D.-310.设双曲线的左焦点为F,直线过点F且与双曲线C在第一象限的交点为P,O为坐标原点,,则双曲线的离心率为( )A. B. C.2 D.11.在棱长为1的正方体中,分别为的中点,点在正方体的表面上运动,且满足,则下列说法正确的是( )A.点可以是棱的中点 B.线段的最大值为C.点的轨迹是正方形 D.点轨迹的长度为12.已知为自然对数的底数,不等式对任意的恒成立,则的最大值为( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分,共20分.)13.在各项均为正数的等比数列中,,,则_____14.定义在R上的函数,关于点对称,恒有,且在上单调递减,则下列结论正确的有_____①.直线是的对称轴②.周期③.函数在上单调递增 ④.15.如图,在四棱锥中,底面为菱形,底面,O为对角线与的交点,若,,则三棱锥的外接球表面积为_________.16.已知圆,抛物线,抛物线C焦点是F,过点F的直线l与抛物线C交于点A、B,与圆E交于点M、N,点A、M在第一象限,则的最小值是__________.三、解答题17.(本小题满分12分)33.在中,角A、B、C的对边分别是a、b、c,且,.(1)求;(2)如图,M为边AC上一点,且,,求的面积.18(本小题满分12分).某保险公司给年龄在20~70岁的民众提供某种疾病的一年期医疗保险,现从10000名参保人员中随机抽取100名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如图所示,参保年龄与每人每年应交纳的保费如表所示.年龄(单位:岁)保费(单位:元)6090120150180(1)求频率分布直方图中实数a的值,并求出该样本年龄的中位数;(2)现分别在年龄段中各选出1人共5人进行回访,若从这5人中随机选出2人,求这2人所交保费之和大于260元的概率.19.(本小题满分12分)如图所示,在边长为的菱形中,,沿将三角形向上折起到位置,为中点,若为三角形内一点(包括边界),且平面.(1)求点轨迹的长度;(2)若平面,求证:平面平面,并求三棱锥的体积.20(本小题满分12分)已知,分别为椭圆的左、右顶点,为的上顶点,.(1)求椭圆的方程;(2)过点作关于轴对称的两条不同直线,分别交椭圆于与,且,证明:直线过定点,并求出该定点坐标.21. (本小题满分12分)已知函数.(1)讨论函数的单调性;(2)若函数在有零点,求证:(ⅰ);(ⅱ). 请考生在(22),(23)二题中任选一题做答,如果多做,则按所做的第一题记分。

      做答时用2B铅笔在答题卡上把所选题目的题号涂黑22.(本小题满分10分)在极坐标系下有许多美丽的曲线,如贝努利双纽线的形状是一个横8字,和谐、对称、优美.以极点为原点,极轴为轴的正半轴的直角坐标系下,曲线的参数方程(为参数).(Ⅰ)求曲线的普通方程和贝努利双纽线的直角坐标方程;(Ⅱ)若,将曲线向左平移2个单位得到曲线,曲线与贝努利双纽线交于两点,求的极坐标.23.(本小题满分10分)设函数,.(1)若,解不等式;(2)如果任意,都存在,使得,求实数的取值范围.(文科数学)答案CCADC,CCCDD,DB 13.9. 14.①③ 15.. 16.2217.解:(1)∵,∴,利用正弦定理边化角,∴,∵,∴,∴,又,∴,∴,∴,∴.(2)由(1)可得:,∴,在中,即,∴,∵,∴,∴,∴,,∴的面积为.18.解】(1)由题意得:,解得,设该样本年龄的中位数为,则,所以解得.(2)回访的这5人分别记为,,,,,从5人中任选2人的基本事件有:,,,,,,,,,共10种,事件“两人保费之和大于260元”包含的基本事件有:,,,,共4种,所以这2人所交保费之和大于260元的概率.19.解】(1)如图,取、中点为、,连接,则点段上,证明如下:连接、,因为为中点,为中点,所以,平面,平面,平面,同理可证平面,又,所以平面平面,平面,所以平面,所以点的轨迹为线段,因为,所以,,所以,即点的轨迹的长度为;(2)连接延长交于点,因为平面平面,且平面平面,平面平面,所以,因为平面,所以平面,又平面,所以平面平面,可得为三棱锥的高,且,.20.解】解:(1)由题意得,,,则,.由,得,即所以椭圆的方程为(2)由题易知:直线的斜率存在,且斜率不为零,设直线方程为,,联立,得,由得,∴,,因为关于轴对称的两条不同直线,的斜率之和为0,∴,整理得,即,解得:直线方程为:,所以直线过定点.21.解】(1)解:①当时,,在R上单调递增;②当时,,所以在上单调递减,在上单调递增(2)(ⅰ)由题意可得,要证明,只要证明,设,,所以在上递增,所以,得证.要证明,只要证明,设,,,,所以,所以,当时,,,得证.(ⅱ)因为,所以,又在上单调递增,,设,,且,设,则,递增,即递增,故, 所以,.22.解】(Ⅰ)直线的普通方程为.由,得,∴贝努利双纽线的直角坐标方程为. (Ⅱ)曲线向左平移2个单位得到曲线,当时,其极坐标方程为,联立得,.23.解】(1)当时,∵,当时,,∴当时,,∴所以的解集为(2)由任意,都存在,使得得:又因为.所以所以或. 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.