
天津市河西区实验中学2024届高三5月定时练习数学试题试卷.doc
20页天津市河西区实验中学2024届高三5月定时练习数学试题试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为( )A.2 B. C. D.2.已知为等差数列,若,,则( )A.1 B.2 C.3 D.63.已知,,则( )A. B. C. D.4.已知,,那么是的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )A.5 B.3 C. D.26.若,则的值为( )A. B. C. D.7.已知为定义在上的奇函数,且满足当时,,则( )A. B. C. D.8.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别段AC,BD1(不包含端点)上运动,则( )A.在点F的运动过程中,存在EF//BC1B.在点M的运动过程中,不存在B1M⊥AEC.四面体EMAC的体积为定值D.四面体FA1C1B的体积不为定值9.已知角的终边经过点P(),则sin()=A. B. C. D.10.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A. B. C. D.11.已知复数(为虚数单位),则下列说法正确的是( )A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.12.已知集合,集合,则等于( )A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.已知为偶函数,当时,,则__________.14.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.15.等边的边长为2,则在方向上的投影为________.16.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N*,则S10=_____.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.(Ⅰ)求证:平面平面; (Ⅱ)若,求二面角的余弦值.18.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线和圆的普通方程;(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.19.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.(1)求椭圆的标准方程;(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.20.(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.女生男生总计获奖不获奖总计附表及公式:其中,.21.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.22.(10分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.C【解题分析】将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.【题目点拨】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.2.B【解题分析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.【题目详解】∵{an}为等差数列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故选:B.【题目点拨】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3.D【解题分析】分别解出集合然后求并集.【题目详解】解:, 故选:D【题目点拨】考查集合的并集运算,基础题.4.B【解题分析】由,可得,解出即可判断出结论.【题目详解】解:因为,且.,解得.是的必要不充分条件.故选:.【题目点拨】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.5.D【解题分析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【题目详解】解:由抛物线方程可知,,即,.设 则,即,所以.所以线段的中点到轴的距离为.故选:D.【题目点拨】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.6.C【解题分析】根据,再根据二项式的通项公式进行求解即可.【题目详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【题目点拨】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力7.C【解题分析】由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【题目详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【题目点拨】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.8.C【解题分析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【题目详解】A错误由平面,//而与平面相交,故可知与平面相交,所以不存在EF//BC1B错误,如图,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由//,平面,平面所以//平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由//,平面,平面所以//平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【题目点拨】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.9.A【解题分析】由题意可得三角函数的定义可知:,,则:本题选择A选项.10.D【解题分析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【题目详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知: , 所以,所以,所以该几何体的最长棱的长为故选:D【题目点拨】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.11.D【解题分析】利用的周期性先将复数化简为即可得到答案.【题目详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【题目点拨】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.12.B【解题分析】求出中不等式的解集确定出集合,之后求得.【题目详解】由,所以,故选:B.【题目点拨】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。
13.【解题分析】由偶函数的性质直接求解即可【题目详解】.故答案为【题目点拨】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力14.【解题分析】由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【题目详解】根据题中的程序框图可得:,执行循环体,,不满足条件,执行循环体,,此时,满足条件,退出循环,输出的值为.故答案为:【题目点拨】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.15.【解题分析】建立直角坐标系,结合向量的坐标运算求解在方向上的投影即可.【题目详解】建立如图所示的平面直角坐标系,由题意可知:,,,则:,,且,,据此可知在方向上的投影为.【题目点拨】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.16.55【解题分析】由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【题目详解】由题意,当n=1时,,当时,由,可得,两式相减,可得,整理得,,即,∴数列是以1为首项,1为公差的等差数列,.故答案为:55.【题目点拨】本题考查求数列的前项和,属于基础题.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17.(Ⅰ)详见解析;(Ⅱ).【解题分析】(Ⅰ)由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;(Ⅱ)取的中点,连接、,以、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【题目详解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面 ,又平面,平面平面;(Ⅱ)取的中点,连接、,是正方形,易知、、两两垂直,以点为坐标原点,以、、所在直线分别为、、轴建立如图所示的空间直角坐标系,在中,,,,、、、,设平面的一个法向量,,,由,得,令,则,,.设平面的一个法向量,,,由,得,取,得,,得.,二面角为钝二面角,二面角的余弦值为.【题目点拨】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.18.(1),;(2)【解题分析】分析:(1)用代入法消参数可得直线的普通方。












