
评价模型中权重的确定方法.ppt
23页主讲主讲: 鲁胜强鲁胜强 温医数模基地温医数模基地现代综合评价方法现代综合评价方法► 权重的确定方法重的确定方法标标准化准化(归归一化一化)v极极值线形模式形模式:新数据=(原数据-极小值)/(极大值-极小值)v均均值标准差模式准差模式:新数据=(原数据-均值)/标准差v对数数Logistic模式模式:新数据=1/(1+e^(-原数据))v模糊量化模式模糊量化模式:新数据= 1/2+1/2sin[派(极大值-极小值)*(X-(极大值-极小值)/2) ] X为原数据权权重重v权重是一个相对的概念,是针对某一指标而言某一指标的权重是指该指标在整体评价中的相对重要程度 v自重权数:以权数作为指标的分值(或分数),或者以权数直接作为等级的分值 v加重权数:在各指标的已知分值(即自重权数)前面设立的权数a. 专专家咨家咨询权询权数法(特数法(特尔尔斐法)斐法)v该法又分为平均型、极端型和缓和型主要根据专家对指标的重要性打分来定权,重要性得分越高,权数越大优点是集中了众多专家的意见,缺点是通过打分直接给出各指标权重而难以保持权重的合理性1. 算算术平均法平均法 专家家评估估统计法法2. 频数数统计法法3. 加加权统计法法加加权统计法的前两步(法的前两步(1),(),(2)同)同频数数统计法。
法 b.因子分析因子分析权权数法数法 v根据数理统计中因子分析方法,对每个指标计算共性因子的累积贡献率来定权累积贡献率越大,说明该指标对共性因子的作用越大,所定权数也越大v根据各评价指标包含的分辨信息来确定权数采用变异系数法,变异系数越大,所赋的权数也越大 计算各指标的变异系数,将CV作为权重分值,再经归一化处理,得信息量权重系数v利用数理统计学中多元回归方法,计算复相关系数来定权的,复相关系数越大,所赋的权数越大v计算每项指标与其它指标的复相关系数,计算公式为, R越大,重复信息越多,权重应越小取复相关系数的倒数作为得分,再经归一化处理得权重系数v一种多元分析法它从所研究的全部指标中,通过探讨相关的内部依赖结构,将有关主要信息集中在几个主成分上,再现指标与主成分的关系,指标Xj的权数为: wj=dj·bij∑mj=1dj·bij 其中bij为第i个主成分与第j个因素间的系数,di=λi/Σλk为贡献率。
f.层层次分析法(次分析法(AHP法)法)v层次分析法是一种多目标多准则的决策方法,是美国运筹学家萨迪教授基于在决策中大量因素无法定量地表达出来而又无法回避决策过程中决策者的选择和判断所起的决定作用,于20世纪70年代初提出的此法必须将评估目标分解成一个多级指标,对于每一层中各因素的相对重要性给出判断它的信息主要是基于人们对于每一层次中各因素相对重要性作出判断v这种判断通过引入1~9比率标度进行定量化该法的优点是综合考虑评价指标体系中各层因素的重要程度而使各指标权重趋于合理;缺点是在构造各层因素的权重判断矩阵时,一般采用分级定量法赋值,容易造成同一系统中一因素是另一因素的5倍、7倍,甚至9倍,从而影响权重的合理性v设n为比较对象(如方案、目标、指标)的数目,优序图是一个棋盘格的图式共有n×n个空格,在进行两两比较时可选择1,0两个基本数字来表示何者为大、为优1”表示两两相比中相对“大的”、“优的”、“重要的”,而用“0”表示相对“小的”、“劣的”、“不重要的”以优序图中黑字方格为对角线,把这对角线两边对称的空格数字对照一番,如果对称的两栏数字正好一边是1,而另一边是0形成互补或者两边都为,则表示填表数字无误,即完成互补检验。
满足互补检验的优序图的各行所填的各格数字横向相加,分别与总数T(T=n(n-1)/2)相除就得到了各指标的权重v熵最先由申农引入信息论,现已在工程技术、社会经济等领域得到比较广泛的应用其基本思路是根据指标变异性的大小来确定客观权重一般来说,某个指标的信息熵Ej越小,表明指标值的变异程度越大,提供的信息量越多,在综合评价中所起的作用越大,其权重也越大相反,某个指标的信息熵Ej越大,表明指标值的变异程度越小,提供的信息量越少,在综合评价中所起的作用越小,其权重也越小把实际数据进行标准化后转变为标准化数据dij后,依据以下公式计算第j项指标的信息熵: Ej=-(lnm)-1∑mi=1pijlnpij 其中m为被评价对象的数目,n为评价指标数目,并且pij=dij∑mi=1dij,如果pij=0,则定义limpij→0pijlnpij=0利用熵计算各指标客观权重公式为:v wj=1-Ejn-∑nj=1Ej j=1,2,3……nv标准离差法的思路与熵权法相似通常,某个指标的标准差越大,表明指标值的变异程度越大,提供的信息量越多,在综合评价中所起的作用越大,其权重也越大。
相反,某个指标的标准差越小,表明指标值的变异程度越小,提供的信息量越少,在综合评价中所起的作用越小,其权重也应越小其计算权重的公式为: vwj=σj∑nj, j=1,2,3,……n 该法的基本思路是确定指标的客观权数以评价指标间的对比强度和冲突性为基础对比强度以标准差的形式来表现,即标准差的大小表明在同一指标内,各方案取值差距的大小标准差越大,各方案之间取值差距越大而各指标间的冲突性是以指标之间的相关性为基础若两个指标之间具有较强的正相关,说明两个指标冲突性较低第j个指标与其它指标冲突性的量化指标为∑nt=1(1-rij)其中rij为评价指标t和j之间的相关系数设Cj表示第j各指标所包含的信息量,则Cj可表示为:vCj=σj∑nt=1(1-rij) j= 1,2,3,……n vCj越大,第j个评价指标所包含的信息量越大,该指标的相对重要性就越大第j个指标的客观权重Wj应为: wj=Cj∑nj=1Cj j= 1,2,3,……nv非模糊数判断矩阵法是通过把三角模糊数判断矩阵转化为非模糊数,将新矩阵调整为互反矩阵,同时对其一致性进行检验,再利用AHP法来确定权重的一种方法。
设三角模糊数M1=(l1,m1,u1),M2=(l2,m2,u2) →建立单位模糊判断矩阵→集结单位模糊判断矩阵建立三角模糊判断矩阵→将三角模糊数转化为非模糊数→对互反性进行调整运用AHP法计算即可得到评价因素的权重集 该方法以三角模糊数判断矩阵为基础,通过一系列的数学处理转换,得到模糊综合评价因素权重,使确定因素权重过程中的主观判断更符合人们的思维习惯与表达方式,在一定程度上改善了传统模糊综合评价的某些缺陷,使该方法的准确性和有效性得到一定的提高。






![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)





