
2022年江苏省盐城初级中学数学八上期末调研模拟试题含解析.doc
19页2022-2023学年八上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每小题3分,共30分)1.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为( )尺码373839404142人数344711A.4和7 B.40和7 C.39和40 D.39.1和392.如图,为的角平分线,,过作于,交的延长线于,则下列结论:①;②;③;④其中正确结论的序号有( )A.①②③④ B.②③④ C.①②③ D.①②④3.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为( )A.2+ B. C. D.34.如图,阴影部分是一个正方形,此正方形的面积是( )A.16 B.8 C.4 D.25.下列四个图形中,与图1中的图形全等的是( )A. B. C. D.6.如图,等边△ABC中,BD⊥AC于D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为( )A.3cm B.4cm C.5cm D.6cm7.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB的边OA,OB上分别取OM=ON,移动直角尺,使直角尺两边相同的刻度分别与M,N重合(即CM=CN).此时过直角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是( )A.HL B.SAS C.SSS D.ASA8.估计+1的值应在( )A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个 B.2个 C.3个 D.4个10.折叠长方形的一边,使点落在边的点处,若,求的长为( )A. B. C. D.二、填空题(每小题3分,共24分)11.已知点P(a,b)在一次函数y=2x+1的图象上,则2a﹣b=_____.12.平行四边形ABCD中,,对角线,另一条对角线BD的取值范围是_____.13.一个n边形的内角和为1080°,则n=________.14.正比例函数的图像经过第______________________象限.15.如图,∠AOB=30°,C是BO上的一点,CO=4,点P为AO上的一动点,点D为CO上的一动点,则PC+PD的最小值为_____,当PC+PD的值取最小值时,则△OPC的面积为_____.16.已知可以被10到20之间某两个整数整除,则这两个数是___________.17.已知,,,比较,,的大小关系,用“”号连接为______.18.直角三角形的直角边长分别为,,斜边长为,则__________.三、解答题(共66分)19.(10分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.(1)求点A的坐标及直线的函数表达式;(2)连接,求的面积.20.(6分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2) (第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2 (第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.21.(6分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(8分)先化简再求值:,其中x=23.(8分)(1)分解因式:;(2)计算:.24.(8分)已知xa=3,xb=6,xc=12,xd=1.(1)求证:①a+c=2b;②a+b=d;(2)求x2a﹣b+c的值.25.(10分)如图,在平面直角坐标系中,点,;(1)作关于轴的对称图形(点、、的对应点分别是、、)(2)将向右平移2个单位长度,得到 (点、、的对应点分别是、、)(3)请直接写出点的坐标.26.(10分)某校开学初在家乐福超市购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍.已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)购买一个A品牌、一个B品牌足球各需多少元?(2)该校响应“足球进校园”的号召,决定再次购进A、B两种品牌的足球共50个,恰逢家乐福超市对这两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果该校此次购买的总费用不超过3260元,那么,最多可以购买多少个B品牌足球?参考答案一、选择题(每小题3分,共30分)1、C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C.【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.2、A【分析】根据角平分线上的点到角的两边距离相等可得,再利用“”证明和全等,根据全等三角形对应边相等可得,利用“”证明和全等,根据全等三角形对应边相等可得,然后求出;根据全等三角形对应角相等可得,利用“8字型”证明;,再根据全等三角形对应角相等可得,然后求出.【详解】解:平分,,,,在和中,,,故①正确;,在和中,,,,,故②正确;,,设交于O,, ,故③正确;,,,,,,故④正确;综上所述,正确的结论有①②③④共4个.故选:.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.3、A【分析】如图,过点D作DF⊥AC于F,由角平分线的性质可得DF=DE=1,在Rt△BED中,根据30度角所对直角边等于斜边一半可得BD长,在Rt△CDF中,由∠C=45°,可知△CDF为等腰直角三角形,利用勾股定理可求得CD的长,继而由BC=BD+CD即可求得答案.【详解】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD==,∴BC=BD+CD=,故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.4、B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【详解】解:如图,∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16∴AB2=AC2=1,∴正方形的面积=AB2=1.故选:B.【点睛】本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.【点睛】本题主要考查了全等形的定义,形状、大小都相同图形为全等形.6、C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,【详解】解:如图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=3.5cm, 作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,∵AQ=2cm,AD=DC=3.5cm,∴QD=DQ′=1.5(cm),∴CQ′=BP=2(cm),∴AP=AQ′=5(cm),∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5(cm),∴PE+QE的最小值为5cm.故选:C.【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.7、C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC≌△ONC(SSS),即可得到结论.【详解】在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠MOC=∠NOC,∴射线OC即是∠AOB的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.8、B【解析】解:∵,∴.故选.点睛:此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键.9、C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C. 10、A【分析】在Rt△ABF中,根据勾股定理求出BF的值,进而得出FC=BC-BF=10-6=4cm.在Rt△EFC中,根据勾股定理即可求出EC的长.【详解】设EC的长为xcm,∴DE=(8-x)cm.∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6cm.∴FC=BC-BF=10-6=4cm. 在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=1.∴x=2.故EC的长为2cm.故答案为:A.【点睛】本题考查了图形的翻折的知识,翻折中较复杂的计算,需找到翻折后相应的直角三角形,利用勾股定理求解所需线段.二、填空题(每小题3分,共24分)11、-1【分析】把P点的坐标代入,再求出。












