
2022年《小学数学课堂的有效教学》读后感.docx
6页2022年《小学数学课堂的有效教学》读后感《小学数学课堂的有效教学》读后感作者简介 刘加霞,北京教化学院老师教化人文学院副院长,教授,教化心理学博士 近几年主要从事北京市小学数学老师培训工作,主要探讨领域为数学教化和老师教化她强调将工作与个人的爱好整合为一体,并以探讨的眼光来对待培训工作她提出并实践着学习共同体为培训平台,老师专业素养的两个基本要素--把握学科本质与探讨学生--为培训核心思想,不仅使各层级老师培训取得了良好效果,在此过程中也收获了丰富的探讨成果,在《华东师高校报》、《中小学管理》、《人民教化》、《小学教学》等报刊杂志上发表论文三十余篇,主编《新课程理念下的小学数学发展性评估》、《小学数学课堂教学设计》、《有效的小学数学课堂教学》等八部著作 内容简介 小学数学教学应当给孩子留下什么?毋庸质疑,留下的是数学的思索方式、数学的思想方法,浸润的是对数学学习的酷爱以及对数学的主动看法数学老师须要怎样的底蕴才能实现这一目标?把握数学本质+探讨学生=有效的课堂教学是我们坚决的信念基于此,《小学数学课堂的有效教学》以发生在课堂教学中的真实故事为载体,阐述了数学的核心概念与基本技能有哪些、怎么教?小学阶段能够渗透的数学的思想方法有哪些、怎么教?学生探讨的切入点是什么?怎样探讨学生?每个故事都有其特定的主题、细微环节,还有多角度的分析和诠释。
它们都是真实的,都是对当前小学数学教学的本质思索它们可能不是灵丹妙药,但赐予我们思索问题的视角,赐予我们对问题深化追问下去的志气和方法 精彩共享 什么是有效的课堂教学?有效的课堂教学就是三维目标有机达成的教学,即学生不仅在课堂上获得了基本的数学学问与技能,而且还驾驭了肯定的数学思想方法,能运用所驾驭的基本学问与技能、思想方法来解决生活中、数学中所遇到的新问题,并且在这学习过程中能够对数学和数学学习产生主动的情感体验和良好看法例如,学生觉得数学学习很好玩,学习数学自己也可以创建而不仅仅是背诵定义公式,做大量的练习等 在共同的教学实践诊断、沟通、研讨中,一线小学数学老师也真正意识到自身最欠缺的正是对数学学科本质的把握那么,数学学科是什么呢?落实到小学阶段有哪些呢?这是一个特别具有挑战性的问题,要解决好这个问题不仅须要探讨者能从高角度上对数学有所把握,还须要探讨者对小学数学的教学内容、教学定位以及学生的认知水平、心理特征等都有所了解对这一问题我们有一个初步的思索: 数学学科本质1:对基本数学概念的理解 小学阶段所涉及的数学概念都是特别基本、特别重要的,越是简洁的往往越是本质的,因此对小学阶段的基本数学概念内涵的理解是如何学习数学、驾驭数学数学思想方法、形成恰当的数学观、真正使情感、看法、价值观目标得以落实的载体。
基本概念教学特别重要,学生经验不同的学习过程将导致学生对概念的理解达到不同水平 所谓对基本数学概念的理解是指了解为什么要学习这一概念,这一概念的现实原型是什么,这一概念特有的数学内涵、数学符号是什么,以这一概念为核心是否能构建一概念网络图 小学数学的基本数学概念主要有:十进位值制、单位、用字母表示数、四则运算;位置、变换、平面图形;统计观念 数学学科本质2:对数学思想方法的把握 基本数学概念背后往往蕴涵重要的数学思想方法数学的思想方法极为丰富,小学阶段主要涉及哪些数学的思想方法呢?这些思想方法如何在教学中落实呢?我们的基本观点是:在学习数学概念和解决问题中落实 小学阶段的重要思想方法有:分类思想、转化思想、数形结合思想、一一对应思想、函数思想、方程思想、集合思想、符号化思想、类比法、不完全归纳法等 数学学科本质3:对数学特有思维方式的感悟 每一学科都有其独特的思维方式和相识世界的角度,数学也不例外,尤其数学又享有熬炼思维的体操、启迪才智的钥匙的美誉小学阶段的主要思维方式有;比较、类比、抽象、概括、猜想、验证,其中概括是数学思维方式的核心。
数学学科本质4:对数学美的鉴赏 能否领悟和观赏数学美是一个人数学素养的基本成分,能够领悟和观赏数学美也是进行数学探讨和数学学习的重要动力和方法能够把握数学美的本质有助于培育学生对待数学以及数学学习的看法,进而影响数学学习的进程和学习成果 数学的基本原则:求真、求简、求美 数学美的核心是:简洁、对称、奇异,其中对称是数学美的核心 数学学科本质5:对数学精神的追求 可以说,数学的理性精神与数学的探究精神是支撑着数学家探讨数学而探讨世界的动力,也是学生学习数学探讨世界的最原始、最永恒、最有效的动力例如,自从古希腊时期,人们对欧氏几何的钟爱,使得古希腊人只关注数学的严谨结构及其理性之美,而不关注现实的应用正是在这种理性精神的支撑下,古希腊人能够探究人眼所不能望见的世界,探讨遥远的太空;也是在这一精神的支撑下,在文艺复兴时期提出了惊世骇俗的转变:从地心说转变为日心说;还是在这一精神的支撑下,在19世纪上半叶提出了非欧几何:罗巴切夫斯基几何以及后续的黎曼几何 读后随感 本书中有许多的优秀教学案例,是老师备课的好帮手。
为了能理解学科新理念,跳出原有教科书的结构,追寻新的相识,超越传统学问视角的结构,采纳案例描述的方式给我们渗透笔者的观点由于要在校要开一节《圆的相识》以及自身的提高,于是我特别的仔细学习了本书,特殊是对第四章一样的圆,多样的演绎进行的研读对于一节概念课,我们要思索三个W:why,what,how.也就是要明白为什么学习这一概念,它在数学上、生活中有什么用?除了概念的形式化定义外,其本质是什么,来龙去脉是什么?这个概念与其他概念之间有什么联系?怎样构建概念图,这些如何在教学中落实?要让学生领悟概念的本质,而不是记忆或者背诵概念的形式化定义 对于优秀,我们该怎么运用呢?学习一份好的教学或观摩一节好课肯定要把握其好的根本缘由,不要简洁仿照其教学活动,要对其进行深化分析理解数学概念的本质是什么,追问优秀老师为什么设计这个活动,我的学生的学习基础是什么等问题在把握数学本质的基础上,真正了解学生的学习基础与发展潜能,老师就可以大胆为学生创设发展的空间 第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页。
