
2013年11月1535877的初中数学组卷.doc
24页一.选择题(共15小题)1.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是( ) 2图 3图 A.m=﹣3nB.m=﹣nC.m=﹣nD.m=n2.如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为( ) A.12B.20C.24D.323.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为( ) A.3B.6C.D.4.如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是( ) 5图 6图 A.x>1B.﹣1<x<0C.﹣1<x<0或x>1D.x<﹣1或0<x<15.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为( ) A.﹣3B.﹣4C.﹣D.﹣26.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( ) A.1B.2C.3D.47.如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是( ) 8图 9图 A.y=xB.y=x+1C.y=x+2D.y=x+3 8.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是( ) A.点A和点B关于原点对称B.当x<1时,y1>y2 C.S△AOC=S△BODD.当x>0时,y1、y2都随x的增大而增大9.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A.(,0)B.(1,0)C.(,0)D.(,0)10.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为( ) A.﹣2B.0C.2D.2.511.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是( ) 12图 14图 A.5个B.4个C.3个D.2个12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为( ) A.1B.2C.3D.413.已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是( ) A.2B.3C.4D.514.如图,点A(a,b)是抛物线上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=﹣bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有( ) A.1个B.2个C.3个D.4个15.如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为( ) 17图 A.B.C.D. 二.填空题(共6小题)16.(2010•镇江)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为 _________ .17.(2012•义乌市模拟)已知:如图,过原点的抛物线的顶点为M(﹣2,4),与x轴负半轴交于点A,对称轴与x轴交于点B,点P是抛物线上一个动点,过点P作PQ⊥MA于点Q.(1)抛物线解析式为 _________ .(2)若△MPQ与△MAB相似,则满足条件的点P的坐标为 _________ .18.已知二次函数y=(k+2)x2﹣2kx+3k,当k= _________ 时,图象顶点在x轴上;当k= _________ 时,图象在x轴上截得的线段为4.19.经过点A(﹣4,5)的抛物线y=﹣x2+bx+5与y轴交于点B.点M在抛物线的对称轴上,点N在抛物线上,且以A,B,M,N为顶点的四边形是平行四边形.则点N的坐标为 _________ .20.(2011•十堰)如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为18,则k= _________ . 21图 21.(2010•包头)如图,已知函数y=﹣x+1的图象与x轴,y轴分别交于C、B两点,与双曲线(k≠0)交于A、D两点,若BC=2AB,则k的值为 _________ .三.解答题(共2小题)22.如图,点A(﹣2,n),B(1,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB﹣CA,求t的最大值,并求出此时点C的坐标. 23.如图,在平面直角坐标系中,点A的坐标为(﹣6,0),以点A为圆心的圆交x轴于O、B两点,直线y=x﹣3交x轴于点C,交y轴于点D,过A、C、D三点作一条抛物线.(1)求抛物线的解析式;(2)判断直线CD与⊙A的位置关系,并说明理由;(3)若点M以每秒4个单位长度的速度由点B沿x轴向点C运动,点N以每秒1个单位长度的速度由点C沿直线y=x﹣3向点D运动.设运动时间为t(t≤4),试问t为何值时△CMN与△CDB相似;(4)在抛物线上是否存在点P,使△APC的面积是△BCD面积的倍?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由. 参考答案 一.选择题(共15小题)1.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是( ) A.m=﹣3nB.m=﹣nC.m=﹣nD.m=n解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A. 2.如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为( ) A.12B.20C.24D.32解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选D. 3.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为( ) A.3B.6C.D.解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选D. 4.如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是( ) A.x>1B.﹣1<x<0C.﹣1<x<0或x>1D.x<﹣1或0<x<1解:∵把A(1,2)代入y1=得:k1=2,把A(1,2)代入y2=k2x得:k2=2,∴y1=,y2=2x,解方程组得:,,即B的坐标是(﹣1,﹣2),∴当y1<y2时,自变量x的取值范围是﹣1<x<0或x>1,故选C. 5.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为( ) A.﹣3B.﹣4C.﹣D.﹣2解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,∴S△BFO:S△OEA=2:1,∵A在反比例函数y=上,∴S△OEA=1,∴S△BFO=2,则k=﹣4.故选B 6.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( ) A.1B.2C.3D.4解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中。












