
八年级数学123_角平分线的性质(1)导学案.doc
4页八年级数学12.3 角平分线的性质(1)导学案学习目标1.掌握利用尺规作一个角的角平分线2.理解角平分线的性质定理, 并会利用角的平分线的性质定理解决实际问题学习重点角平分线的性质定理学习难点利用角的平分线的性质定理进行相关的计算或证明一、导入平分一个角的方法有很多,如度量法,折叠法等,学习了全等三角形后,我们通常用尺规作图的方法来作一个角的平分线二、自学P48-P49,思考下列问题1.作已知角的平分线的方法是什么?在作法的第二步中,去掉“大于MN的长”这个条件行吗?第二步中所作的两弧交点一定在∠AOB的内部吗?2. 点到直线的距离是什么?3. 如何证明角平分线的性质?写出已知,求证并给予证明4.用数学符号表示为:(如右图)∵点P在∠AOB的角平分线上,且PD⊥OA,PE⊥OB, ∴ ______=_______( )5. 角平分线定理的作用是什么?应用该定理必须具备什么样的前提条件?6. 三角形三个内角平分线有什么特征?如何做简单的论证?7.证明一个几何命题的一般步骤是什么?三.合作交流1、如图所示OC是∠AOB 的平分线,P 是OC上任意一点,问PE=PD?为什么?BAEODCP2、如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF; 求证:CF=EBEDCBA3.在Rt△ABC中,BD平分∠ABC, DE⊥AB于E,则⑴图中相等的线段有哪些?相等的角呢?⑵哪条线段与DE相等?为什么? ⑶若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长。
四、当堂检测1.如图在△ABC中∠C=90°,AD平分∠CAB,BC=8,BD=5,那么D到直线AB的距离是___2. 如图若点P在∠AOB的角平分线上,若应用角平分线的性质可得到:PA=PB则需要添加的条件是___3.如图,∠C=90°AD是∠BAC的平分线,,且DE=3cm,BD=4cm,则BC= cm4.如图,平分,于,于,为上一点,连接、.求证:⑴ ⑵=5.如图所示,是的平分线,于,于,且,那么与相等吗?为什么?五、作业1.如图,在中,,平分,,连接,则下列结论错误的是( )A.≌ B. C. D.2.如右图,在中,,,平分,于,且,则的周长为( )A.4 B.6 C.8 D.103.如上题图,在中,,平分,已知,,则点到的距离为_______cm.4.如图,平分,交延长线于,于,且.求证:6.如图,平分,于,于,连接交于.求证:7.已知,如图为的平分线,,点在上,于,于.求证:。






![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)





